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The interactions of molecules and particles in solution often involve an interplay between isotropic
and highly directional interactions that lead to a mutual coupling of phase separation and self-
assembly. This situation arises, for example, in proteins interacting through hydrophobic and charged
patch regions on their surface and in nanoparticles with grafted polymer chains, such as DNA. As
a minimal model of complex fluids exhibiting this interaction coupling, we investigate spherical
particles having an isotropic interaction and a constellation of five attractive patches on the particle’s
surface. Monte Carlo simulations and mean-field calculations of the phase boundaries of this model
depend strongly on the relative strength of the isotropic and patch potentials, where we surprisingly
find that analytic mean-field predictions become increasingly accurate as the directional interactions
become increasingly predominant. We quantitatively account for this effect by noting that the effective
interaction range increases with increasing relative directional to isotropic interaction strength. We
also identify thermodynamic transition lines associated with self-assembly, extract the entropy and
energy of association, and characterize the resulting cluster properties obtained from simulations
using percolation scaling theory and Flory-Stockmayer mean-field theory. We find that the fractal
dimension and cluster size distribution are consistent with those of lattice animals, i.e., randomly
branched polymers swollen by excluded volume interactions. We also identify a universal functional
form for the average molecular weight and a nearly universal functional form for a scaling parameter
characterizing the cluster size distribution. Since the formation of branched clusters at equilibrium is
a common phenomenon in nature, we detail how our analysis can be used in experimental character-
ization of such associating fluids. C 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4941454]

I. INTRODUCTION

Many complex fluids are composed of highly anisotropic
molecules in solution that can be described by a superposition
of directional and isotropic intermolecular interactions.
To describe these fluids, patch models, which represent
molecules as spheres decorated by a constellation of “patches”
that introduce directional interactions, provide an attractive
minimal model that allows for the study of both liquid-liquid
phase coexistence and self-assembly.1 Although such models
are applicable to a wide variety of complex fluids, most
current work using these models focuses on protein and
colloidal solutions.

Patchy models have been used extensively to describe
small globular proteins, such as lysozyme and γ-crystallin,2–7

since they gained attention in 1999 due to work done
by Benedek and coworkers.8 The introduction of patches
represented an advance over prior models that only considered
isotropic interactions.9–12 Although the treatment of proteins
as spherical particles is simplistic, as detailed by Sarangapani
et al.,13 this approach is useful for analyzing scattering data12,14

and for describing the phase coexistence of proteins.2,4,6,7

a)debra.audus@nist.gov
b)jack.douglas@nist.gov

Recently, Dill et al.7 used a variant of a patch model
where the proteins were treated as hard spheres, while the
number and interaction strength of the patches were estimated
using experimental liquid-liquid phase coexistence curves. In
particular, they found that they could reproduce liquid-liquid
phase coexistence curves for lysozyme and γ IIIa-crystallin
in a phosphate buffer with pH strengths close to seven.
However, they did not consider the presence of attractive
isotropic interactions (in addition to those of the attractive
patches), as Liu et al.4 had done previously. Liu et al.
found that spheres with a short-range isotropic interaction
and either 4, 5, or 7 attractive patches could also reproduce
the liquid-liquid phase coexistence curves of lysozyme and
γ-crystallin when normalized by both the critical temperature
and density. Dill et al.,7 Liu et al.,4 and others2,6 have
focused primarily on liquid-liquid phase separation rather
than self-assembly, a process that can occur well above the
critical temperature for phase coexistence. Experimentally,
it is known that proteins form self-assembled clusters, but
it is less clear whether the clusters form under equilibrium
or non-equilibrium conditions15–21 and how their formation
relates to phase coexistence.

Distinct from the case of proteins, patch models have been
used extensively to study the self-assembly of synthesized
anisotropic particles, in addition to their phase separation.22–28
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These studies are fueled by advances in the synthesis of new
particles that are anisotropic in shape or interactions, as well as
the use of particles in applications including electronics and
drug delivery.29–32 For example, one realization of patchy
particles uses DNA to provide highly specific interac-
tions,33–36,83 with recent advances in synthesis allowing for
systematic design of patch symmetries and size.35,36 The inter-
actions of such patchy particles can be further controlled by
modifying the length, sequence, and number of DNA strands.32

Although the patch models are simplistic, they provide a
platform for quantifying the role of anisotropic interactions
compared to isotropic interactions, an interplay that is clearly
of importance in both protein and particle solutions, as well
as in molecular fluids with highly directional interactions,
e.g., water and alcohols. Using a lattice-based patch model,
Frenkel et al.37 identified the critical temperature and critical
density for a wide range of both isotropic and patch interaction
strengths, as well as various locations and numbers of patches
using both simulations and theory. However, they did not
compute the liquid-liquid phase coexistence curves nor did
they study self-assembly. Roberts and Blanco38 also studied
the role of anisotropic interactions, but limited their study to
the second osmotic virial coefficient.

The interplay of anisotropic and isotropic interactions has
broad significance in the study of the coupling between phase
separation and self-assembly. Dudowicz and coworkers39–41

have studied this problem in detail within the context of
lattice-based linear polymerization models. They quantified
the competition between phase separation and dynamic
formation of polymers, a common type of self-assembly
process. However, their theory was only developed for
molecules having the equivalent of two spots so that only
linear polymers are formed. If more patches are considered,
the resulting molecules self-assemble into dynamic, branched
polymeric clusters.42–44 This case has received relatively less
attention in the literature where the coupling between phase
separation and self-assembly is considered.42,45

To quantify the effects of the relative isotropic to
anisotropic interaction strength in the context of the practical
problem of characterizing protein and patchy particle solutions
and to fill a gap in the literature regarding the quantification
of coupling between phase separation and self-assembly
for multi-functional particles, we study a five spot patch
model using both exact Monte Carlo simulations and a
renormalized mean-field theory. We expect this generic model
of multi-particle association to provide insight into the general
pattern of phase separation and self-assembly in complex
fluids; thus, we analyze the phase boundaries of these fluids
and cluster formation properties including the self-assembly
transition lines for cluster formation and percolation, energy
and entropy of association, size distributions, and cluster
shapes as a function of the relative interaction strength.
Although our analysis of the phase boundaries follows the
qualitative pattern examined for the two spot case,39–41 the
extension to multi-functional association, coupled with both
simulations and mean-field theories, leads to many new results
in comparison to former work.22–25,39–41,45 Specifically, we
analytically quantify the relative difference of the simulation
and mean-field critical temperatures due to fluctuations

absent in mean-field descriptions. Additionally, we identify
a universal function for the average cluster size, inspired by
mean-field theories, and explore the implications of our results
on the interpretation of experimental data.

The paper is organized as follows. In Sec. II, we describe
our model of patchy particles, simulation techniques, and
the renormalized mean-field theory. In Sec. III, we present
the liquid-liquid phase coexistence curves, and in Sec. IV,
we present thermodynamic transition lines related to the
formation of clusters for multiple different relative isotropic to
directional interaction strengths. We also analyze the cluster
size distribution using geometrical percolation theory and
Flory-Stockmayer theory, and we quantify cluster shape and
size using the radius of gyration tensor. Finally, we discuss
the applicability of our results to experimentally realizable
quantities in Sec. V, and in Sec. VI, we summarize the main
findings of our work.

II. METHODS

A. Patchy particle model

Our patchy particles consist of spheres with diameter σ
that are decorated with five completely penetrable, smaller
spheres, or patches, of diameter δσ. The smaller spheres
are arranged in a dipyramid shape with the center of the
smaller spheres located at the edge of the larger sphere (see
Fig. 1). The large spheres interact with an isotropic square
well potential,

ui(ri) =



∞ ri ≤ σ

ϵ i σ < ri ≤ λσ

0 ri > λσ

, (1)

where ri is the distance between the centers of the large
spheres. The small spheres located on different particles
interact through a purely attractive square well potential,

up(rp) =



ϵp rp ≤ δσ

0 rp > δσ
, (2)

where rp is the distance between the centers of the small

spheres. We chose δ = (


5 − 2
√

3 − 1)/2 ≈ 0.119, which is
the largest size where geometric constraints dictate that patchy
“bonds” only occur between two, rather than three or more
particles; this choice allows for comparison with theory. We
choose the isotropic range λ = 1.15 consistent with the model

FIG. 1. Patchy particle with the location of five spots shown. Lines indicate
the geometric relation between spots. Image made with VMD software.46
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of Liu et al.4 Since the interactions are attractive and short-
ranged, the isotropic term can be thought of qualitatively as a
van der Waals interaction.

B. Monte Carlo simulations

For the calculation of the liquid-liquid phase coexistence,
we applied the transition matrix Monte Carlo (TMMC)
method, as described in Ref. 47. TMMC was performed in
the grand canonical ensemble where the number of particles
N varies during the course of the simulation. For efficiency,
each individual simulation considers only a range of N ,
specifically, from Nmin to Nmax. Due to the computational
expense of simulations sampling large N , the range of particles
is chosen to decrease with increasing Nmin. In particular,
Nmin = N0n2/3 where N0 is a prefactor, n is the simulation
number, and Nmax is chosen such that there is an overlap of four
values of N , i.e., Nmax = N0(n + 1)2/3 + 4. For example, taking
N0 = 164, simulation numbers 0, 1, and 2 have [Nmin, Nmax]
ranges of [0, 168], [164, 264], and [260, 345], respectively.
Each simulation was run across 12 cores with the particle
range determined using a similar method. Specifically, for
odd processor number p, the range is [Nmin + c(p − 1)2/3,
Nmin + c(p + 1)2/3 − 1], and for even processor number p,
the range is [Nmin + (c/2)((p − 2)2/3 + p2/3), Nmin + (c/2)(p2/3

+ (p + 2)2/3) − 1] where c = 0.202(Nmax − Nmin). Such a
choice allows for a large overlap in order to facilitate equili-
bration through swaps in particle range between processors.

All simulations were initialized without any particles in
order to ensure random initial configurations and were only
limited to their specified ranges once Nmin was achieved.
At each Monte Carlo step, one of four types of moves
was attempted: single particle insertions (10% probability),
single particle deletions (10% probability), single particle
rotations (40% probability), or single particle displacements
(40% probability). Every 108 Monte Carlo moves, simulations
on different cores were allowed to swap their Nmin and Nmax if
their N ranges overlapped. The target maximum displacement
and maximum rotation angle were updated with a target
acceptance rate of 50%. Finally, the probability distributions
of sampling N particles were updated using data across all 12
cores. Simulations continued until each N was visited 25 000
or more times from a different N . Normally, each N was visited
from a different N close to 107 times for N less than 150 and
close to 106 for almost all N up to 900, with the exception
of the patchy limit ϵ i = 0. The probability distributions from
each simulation were then stitched together by matching the
probability distributions at the largest N for the simulation
with fewer particles, and demanding normalization. Finally,
reweighting of the chemical potential was used to find
the condition where the areas under both the low density
and high density curves were equal, which was then used
to define the average density in both the dilute and rich
phases.

The corresponding critical point for the liquid-liquid
phase separation was estimated using fits to the structure
factor in the one phase region. Details of this technique can
be found in the supplementary material.48 Our results agree
with standard scaling expressions for critical properties of

theories that incorporate fluctuation effects by altering the
critical exponents from their mean field theory values.49

For the one phase region, canonical Monte Carlo simu-
lations were run with a 50% probability of single particle
displacement and a 50% probability of single particle rotation
at each Monte Carlo step. For densities ρ ≡ N/V < 0.8σ−3,
the initial configuration was generated via a grand canonical
simulation until the desired density was reached. For ρ ≥
0.8σ−3, this procedure was prohibitively computationally
expensive to perform for each simulation, so it was performed
once to generate a random initial condition that was then used
for all temperatures and interaction strengths considered. The
maximum displacement distance and maximum rotation angle
were chosen such that moves were accepted roughly 50%
of the time. After the maximum displacement and maximum
angles were determined, the simulations were run for 5 × 109

Monte Carlo steps; the first 5 × 108 Monte Carlo steps were
discarded in order to ensure the equilibration of the system. For
calculations of the heat capacity, simulations were run for 5
× 1010 Monte Carlo steps, and the first 5 × 109 Monte Carlo
steps were discarded in analysis. The heat capacity was com-
puted for each temperature and density using fluctuations of the
potential energy (e.g., (⟨U2⟩ − ⟨U⟩2)/(kBT2)); uncertainty was
determined using a standard error analysis.50 The maximum
heat capacity was estimated by fitting a quadratic function to
the heat capacity data in the vicinity of the maximum.

All simulations were run using a cubic box size of edge
length 10σ with periodic boundary conditions such that the
volume V = 1000σ3. The metrics for clustering only weakly
depend on box size at this size (see comparison to a smaller
box size in final section in the supplementary material48).
For consistency, the same box size was used for the phase
separation.

C. Renormalized mean-field theory

To describe our system using theory, we use a statistical
associating fluid theory for variable range potentials (SAFT-
VR)51 and subsequently apply a renormalization technique. In
SAFT-VR, an approximate theory, the Helmholtz free energy
normalized by the number of particles is given by

f = f id + f i + fp, (3)

where the subscripts id, i, and p correspond to the ideal,
isotropic square well, and patchy contributions, respectively.
The ideal part of the free energy is given by

β f id = ln(ρλ3
T) − 1, (4)

where β ≡ 1/(kBT), kB is Boltzmann’s constant, T is
temperature, ρ is the number density, and λT is de Broglie’s
wavelength.

The isotropic contribution to the free energy, treated using
an inverse temperature expansion,52,53 is described by a sum
of three contributions

β f i = β fhs + β fsw,1 + β2 fsw,2, (5)

where β fhs is the hard sphere contribution and β fsw,1 and
β2 fsw,2 are the first and second perturbation terms. From
Carnahan and Starling,54 the hard sphere contribution is
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approximated as

β fhs =
4φ − 3φ2

(1 − φ)2 , (6)

where the packing fraction φ = ρσ3π/6. Following Gil-
Villegas et al.,51 the two square well contributions are

β fsw,1 = −4φβϵ i
�
λ3 − 1

� 1 − 1
2φeff

(1 − φeff)3 (7)

and

β2 fsw,2 =
1
2
βϵ iφ

(1 − φ)4
1 + 4φ + 4φ2

∂ β fsw,1

∂φ
, (8)

where the effective volume fraction is φeff = 0.859 413φ
− 0.153 391φ2 − 0.121 318φ3 for the isotropic range λ = 1.15.

The patch contribution to the free energy, estimated using
Wertheim’s thermodynamic perturbation theory55–57 is

β fp = Mp

(
ln X − X

2

)
+

Mp

2
, (9)

where Mp is the number of patches and X is the fraction of
patches that are non-bonded,

X =
2

1 +


1 + 4Mpρ∆
. (10)

The patch interaction strength is

∆ = 4π
 σ+δ

σ

gsw(r12)⟨ f (12)⟩ω1,ω2
r2

12dr12. (11)

Here, r12 is the distance between two particles, gsw is the
reference pair correlation function, f (12) = e−βup − 1 is the
Mayer f function,58 and ⟨ f (12)⟩ω1,ω2

is the Mayer f function
averaged over all orientations,

⟨ f (12)⟩ω1,ω2
= (exp(βϵp) − 1)S(r), (12)

with S(r) = (δσ + σ − r)2(2δσ − σ + r)/(6σ2r).24 Note that
the Mayer f function only includes the patch interactions,
since the isotropic interactions are contained in the reference
pair correlation function, gsw(r12), which is approximated by
its value at contact, since the range of interaction is short. In
turn, the contact value, gsw(σ), is approximated by51

gsw(σ) =
1 − 1

2φ

(1 − φ)3 +
1
4

(
∂ β fsw,1

∂φ
− λ

3φ
∂ β fsw,1

∂λ

)
.

(13)

Here, the first term represents the hard sphere radial
distribution function and the following two terms together
yield the O(β) term in the free energy expansion. Note
that only an n − 1 order expansion is required for structural
quantities such as g(r) in order to be consistent with n order
expansion for thermodynamic quantities such as f .51 Using
the above approximations, the patchy interaction strength
simplifies to the form

∆ = gsw(σ)(exp(−βϵp) − 1)Vb, (14)

where the bonding volume Vb = πδ4σ3(4δ + 15)/30.
However, it is evident that this theory involves a number

of approximations and thus fails to recover the correct
theta temperature TΘ, or Boyle temperature, defined as the

temperature at which the second osmotic virial coefficient B2
vanishes, i.e., B2(TΘ) = 0. This defect in the analytic theory can
be corrected by redefining the isotropic interaction strength so
that the theory exactly recovers TΘ, a basic measure of mean
interparticle interaction. We refer to the resulting analytic
model as the renormalized mean-field theory (RMFT). Such a
renormalization also yields an improved estimate of B2 across
the full range of temperatures (see Sec. 1 in the supplementary
material48) and should minimize errors due to the inverse
temperature expansion meaning that the main effect of devia-
tions between RMFT and simulation will be due to the mean-
field approximation rather than other approximations. The
need for a theory whose deviations are primarily due to only
the mean-field approximation will become apparent in Sec. III.

The first step in the renormalization procedure involves
determining B2 for the exact model and the approximate
theory. In particular, B2 can be exactly computed for our
model using the Mayer cluster formalism59

B2 =
−1

32π2


dr12


dΩ1


dΩ2

�
e−βu − 1

�
, (15)

where r12 is the distance between the center of mass of
the two particles, Ω j is the orientation of particle j, u is
the total potential energy including both isotropic and patch
contributions. Evaluating the above quantity yields

B2

Bhs
2

= 1 − (λ3 − 1) �eβϵi − 1
�

−M2
p

(
δ5

10σ5 +
3δ4

8σ4

)
eβϵi

�
eβϵp − 1

�
(16)

with Bhs
2 representing the hard sphere virial. For the approxi-

mate liquid state theory described above, B2 can be computed
by expanding the compressibility factor in density and taking
the coefficient of the first order term. Such a calculation results
in the relation
BMFT

2

Bhs
2

= 1 − (λ3 − 1)
(
βϵ i +

1
2
β2ϵ2

i

)
−M2

p

(
δ5

10σ5 +
3δ4

8σ4

)
(1 + βϵ i) �eβϵp − 1

�
. (17)

The second step in the renormalization procedure involves
determining the renormalized ϵ i, denoted as ϵ re

i for ϵ i , 0. For
clarity, we switch to energy and temperature scales relative
to the patch energy ϵp. Next, we compute the exact, analytic
value of TΘ for a given ϵ i. We then determine a renormalized
value of ϵ re

i , by requiring TMFT
Θ

(ϵ re
i ) = TΘ(ϵ i) exactly. Then ϵ re

i
is used in place of ϵ i within the theory to yield the RMFT.
This procedure ensures that the mean-field theory produces
the correct theta temperature for our molecular model. The
dependence of ϵ re

i on ϵ i is shown in Sec. 1 of the supplementary
material.48

Using the above theory, the critical point is determined
by simultaneously requiring ∂3(ρ f )/∂ρ3 = 0 and ∂2(ρ f )/∂ρ2

= 0. The phase coexistence is determined by minimizing
the total free energy density of the system, i.e., ρT fT = (ρT
− ρ2)/(ρ1 − ρ2)ρ1 f (ρ1) + (ρT − ρ1)(ρ2 − ρ1)ρ2 f (ρ2) with re-
spect to ρ1 and ρ2 subject to 0 ≤ ρ1 ≤ ρT and ρT ≤ ρ2
≤ 6/(πσ3). ρT is the initial concentration and always chosen
to be the critical density. This procedure is a Gibbs ensemble
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formulation60 and is equivalent to requiring that the chemical
potentials and pressures are equal in both phases.

For conciseness, we define energy and temperature scales
relative to the patch energy strength ϵp, and lengths relative to
the hard sphere diameter σ for the remainder of the paper.

III. PHASE SEPARATION

Prior to investigating self-assembly, we determine the
location of the liquid-liquid phase coexistence curves as a
function of the isotropic interaction strength ϵ i, where ϵ i is
in reduced units and thus represents the relative isotropic to
directional interaction strength. In Fig. 2, we show the phase
boundaries obtained by Monte Carlo simulation and RMFT.
In both cases, the critical density ρc and temperature Tc shift
to smaller values with decreasing ϵ i, although the shift is
more pronounced for the analytic theory. A prior study23 on
the numbers of patches in the ϵ i = 0 limit found that the
critical density decreases with decreasing number of patches
and becomes zero in the two spot case.23 In this sense, making
the number of patches large qualitatively corresponds to an
isotropic potential, so the trend for ρc and Tc with increasing
ϵ i is consistent with the earlier work. Additionally, the non-
zero critical density for patch numbers greater than two is
fundamentally different than the two spot case where only
linear chains can form. Previous work has attributed this shift
to a constant non-zero ρc in the ϵ i = 0 limit to the presence of
cooperative interactions due to competitive equilibria.61

It is apparent from Fig. 2 that the RMFT becomes an
increasingly accurate description of the simulation data for
small values of ϵ i. In order to explore this further, we plot
the critical temperatures for both simulation Tc,sim and RMFT
Tc,RMFT along with the theta temperature TΘ in Fig. 3(a). As
mentioned in Sec. II, the TΘ corresponds to the temperature at
which the second osmotic virial coefficient B2 = 0. Examples
of B2 as a function of temperature for different values of ϵ i can
be found in Fig. 3(b). Due to the renormalization technique
employed in the RMFT, the TΘ for both the simulation and

FIG. 2. Phase coexistence curves for both simulation and renormalized
mean-field theory (RMFT) for different interaction strengths (ϵi). Squares and
circles denote critical points. Simulation critical points are estimated from
analysis of scattering data coupled with rectilinear diameters. Dashed lines
are only for guidance.

FIG. 3. (a) Theta temperature for the model along with critical tempera-
tures for both simulation Tc,sim and renormalized mean-field theory (RMFT)
Tc,RMFT. (b) The second osmotic viral coefficient B2 for various interac-
tion strengths (ϵi). (c) Ratio of Tc,sim to Tc,RMFT. The dotted line corre-
sponds to an estimation of the critical fluctuation effects as described in the
text.

RMFT is equal, by definition (see Eq. (16)). Due to critical
fluctuation effects, which are absent in RMFT (as well as all
analytic theories of phase separation in three dimensions), we
would expect deviations between Tc,RMFT and Tc,sim. However,
these deviations, surprisingly, almost vanish as the purely
patchy limit is approached (i.e., small ϵ i). This striking
effect, that fluctuation effects are weak in the patchy limit,
is apparent in former simulations but has not been explained
previously.23,62 In the patchy limit, ϵ i = 0, the ratio of TΘ to Tc
approaches a constant that is greater than 1, the limit for long
permanent homopolymers.

In order to quantify the critical fluctuation effects as a
function of ϵ i, we plot the ratio of Tc,sim to Tc,RMFT (Fig. 3(c)).
In the limit that ϵ i → ∞, we expect this ratio to be less
than 1 and comparable to the corresponding estimate for
the Ising model in three dimensions with a nearest neighbor
interactions, Tc,sim/Tc,RMFT = 0.752.63,64 This ratio is nearly
independent of the lattice64 suggesting its applicability for
off-lattice fluids. Further, an expansion of Tc,sim/Tc,RMFT in
terms of the lattice coordination number q yields65–67

Tc,sim

Tc,RMFT
= 1 − 1

q
+ O(q−2). (18)

We can translate Eq. (18) into a corresponding result for an
off-lattice fluid by calculating the B2 of a lattice fluid, as
well as that of a square well fluid in the continuum. Direct
correspondence implies that q in the lattice model corresponds
to the dimensionless interaction range variable λ of the square
well potential, i.e., q ∝ λ3 − 1.67–69 Thus, we have
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Tc,sim

Tc,RMFT
= 1 − a0

λ3 − 1
− O[(λ3 − 1)−2], (19)

where we take a0 to be a constant that exactly recovers
the nearest-neighbor Ising result in the limit ϵ i → ∞. For

λ = 1.15, this condition implies a0 = 0.129 by consistency.
Since λ3 − 1 can be taken as the prefactor to (eβϵi − 1)
in B2 (Eq. (16)), B2 can also be used to determine an
effective range parameter λ̄ for any ϵ i by following the same
principle,

λ̄3 − 1 =
(λ3 − 1) �eϵi/T − 1

�
+ M2

p

(
δ5

10 +
3δ4

8

)
eϵi/T

�
e1/T − 1

�

(eϵi/T − 1) . (20)

We also need the temperature, which we chose to be Tc,RMFT,
in order to fully specify λ̄3 − 1. Combining this information
with the value of a0 from our continuum potential model
and Eq. (19) with the replacement of λ by λ̄ allows for
a prediction of Tc,sim/Tc,RMFT using only system parameters
and RMFT. Fig. 3(c) shows the resulting prediction as a
dotted line. There seems to be a constant shift of ≈0.03
between our theoretical estimates and measured ratios, but
this discrepancy is likely due to the inherent approximations
of the RMFT. Given these approximations, we view the
similarity of the results as quite encouraging. Additionally,
the analysis indicates that RMFT works better at smaller
values of ϵ i because the effective coordination number of
the intermolecular interaction increases as ϵ i decreases, an
effect that is naturally associated with large clustering near the
critical point. We emphasize that this prediction requires no
knowledge from simulation. Thus, it can be used to estimate
the phase boundaries with fluctuations based on only RMFT.
Of course, separate arguments will have to be considered to
estimate the correct critical density with fluctuation effects
included.

IV. SELF-ASSEMBLY

A. Self-assembly transition lines

In addition to phase separation, due to their patchy
nature, our particles form dynamic clusters upon cooling,
where clusters are uniquely defined through associative patchy
interactions. In our case, clusters can be defined without the
introduction of a cut-off distance, since the patchy potential
is prescribed by a square well interaction. Fig. 4 illustrates
examples of different clusters obtained from simulation. It is
clear that the clusters resemble highly branched polymers.
They also contain multiple branch points and loops, and form
and disintegrate in dynamic equilibrium. Prior to quantifying
the cluster distributions and sizes of these clusters, we first
consider two metrics that can be used to define polymerization
transition lines governing the self-assembly, as opposed to the
liquid-liquid phase separation boundaries. As this process of
self-assembly does not involve discontinuities in any of the
derivatives of the free energy, these polymerization transition
lines highlight the progress of self-assembly, rather than
a phase transition proper. Nonetheless, it has been shown
that the polymerization transition lines for linear polymers

can be described as a line of “rounded,” thermodynamic
transitions70,71 that can be mathematically described by
an interacting spin model with an applied magnetic field
controlling the degree of “rounding” or “cooperativity.”72

We expect that a similar situation is true for our branched
polymeric clusters.

The first metric for describing the emergence of self-
assembly is the extent of particle cluster formation Φ, also
referred to as the extent of polymerization. Φ is defined
as the average fraction of particles that are in clusters, as
opposed to being in a monomeric state, which is given by
1 − Φ. This quantity represents an order parameter for the
self-assembly.39–41 Simulation results for Φ are plotted as
points in Fig. 5(a) for ϵ i = 0.1, various temperatures, and
various densities. When either the temperature is lowered or
the density is increased, Φ, and thus the number of particles in
clusters, increases. Since the predictions forΦ as a function of
T from RMFT do not exactly overlap with the simulation data,
we use the functional form from RMFT to obtain accurate
estimates for Φ at intermediate temperatures. Specifically,

Φ = 1 − X5, (21)

where X is the probability that a patch is not bonded and is
given analytically by Eq. (10); thus 1 − X5 is the probability
that there is at least one bonded patch. The exponent 5 signifies
the number of patches per particle. Combining the relation
between Φ and X (Eq. (21)), the relation between X and ∆
(Eq. (10)), and the expression for ∆ (Eq. (14)), yields the

FIG. 4. Example clusters of various sizes. This image was made with VMD
software.46
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FIG. 5. (a) The order parameter Φ and (b) the probability of percolation
pperc as a function of temperature for densities ranging from 0.1 to 0.9. The
interaction strength ϵi is 0.1. Points are simulation data, and lines are fits that
are detailed in the text.

functional form for RMFT,

Mp∆ =

(
aΦ +

ϵ i

T
bΦ

)
(e1/T − 1) (22)

with the parameters aΦ and bΦ defined exactly within RMFT
given both ϵ i and ρ. Since the theory does not match
the simulations exactly, we let aΦ and bΦ become fitting
parameters. Note that bΦ is exactly 0 for the case of ϵ i = 0,
and thus it is not used as a fitting parameter in this limit.
As can be seen from Fig. 5(a), this procedure provides an
excellent description of the simulation data.

In order to characterize the assembly process, we
also identify the thermodynamic conditions at which
percolating or system spanning clusters become significant
in our simulations. Following standard arguments of simple
geometrical percolation theory,73 we consider the probability
that one or more clusters of associated particles percolate
across the simulation box at any given time during the course
of the simulation as our second metric for self-assembly. Note
that unlike simple geometrical percolation theory, clusters
are defined through patch interactions rather than proximity.
The resulting percolation probability is plotted as points
in Fig. 5(b) for ϵ i = 0.1. The data at low temperatures
are cut-off due to intersection with the phase coexistence
curves. The lines are fits assuming that the distribution
follows 1/2(1 − erf[(T − ∆T)/w]) where ∆T and w are fitting
parameters that are dependent on the density.73 As simulation
box size increases, these curves in Fig. 5(b) should approach
Heaviside step functions in the thermodynamic limit; however,
finite size effects cause a rounding of this transition.73

Fortunately, the temperature at which the probability of
percolation, pperc, equals 1/2 denoted by Tpperc=1/2 is only
slightly sensitive to the simulation box size (see final section

in the supplementary material48), and thus, Tpperc=1/2 can
be used with minimal concern regarding finite size effects.
Interestingly, when pperc = 1/2,Φ varies only slightly, ranging
from 0.83 to 0.89 suggesting that Φ alone may serve as a
rough criterion for describing the state of self-assembly. This
point will be explored below.

These metrics are then used to define polymerization
transition lines, which in turn define the continuous process
of particles associating into polymeric structures. For a given
density and ϵ i, the temperatures at which Φ = 1/2, ∂2Φ/∂T2

= 0 (inflection point) and pperc = 1/2 define polymerization
transition lines. These transition lines are denoted as TΦ=1/2,
TΦ,infl, and Tpperc=1/2, respectively. Fits to the simulation data,
such as that in Fig. 5(a), are used to identify the transition lines
based onΦ, while linear interpolation is used for the transition
lines based on pperc. These transition lines are represented by
points in Fig. 6 for various values of ϵ i. For comparison,
estimates of the phase boundaries from simulation (see Fig. 2)
are shown as dashed lines. TheoreticalΦ based transition lines
are computed with RMFT, since Φ = 1 − X5 with X given by
Eq. (10). Interestingly, there is a crossover point in these
transition lines for different values of ϵ i at densities around
0.75. In RMFT, Φ is calculated directly from X , and the only
dependence on ϵ i occurs in the reference radial distribution
function. At the observed crossover point in RMFT where Φ
does not depend on ϵ i, the square well contributions to the
reference radial distribution function perfectly cancel such
that the radial distribution function is equal to the hard sphere
radial distribution function (see Eq. (13) noting that the first
term is the hard sphere contribution).

The maximum in the heat capacity is also used as a metric
for self-assembly and is directly determinable via experiments.
Thus, this metric is shown in Fig. 6 for both simulations and
RMFT. For the simulations, it is difficult to determine precise
values of the maximum heat capacity, and based on our fits,
we estimate the uncertainty to be roughly twice the symbol
size. Note that the RMFT for the maximum heat capacity

FIG. 6. (a) Metrics for clustering transitions for both simulation (points) and
renormalized mean-field theory (solid lines). Dashed lines represent rough
estimates of phase boundaries. Interaction strengths considered are ϵi= 0, 0.1,
0.2, 0.3, and 0.4 with the lowest data representing ϵi= 0. (b) Values for only
ϵi= 0 for clarity.
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deviates from the simulation data much more than in the case
of Φ based transition lines for reasons that are not clear.

Together, the four polymerization transition lines
displayed in Fig. 6 provide a characterization of the self-
assembly present in our system. Specifically, at very high
temperatures all of the particles are in a monomeric state.
Then, as the temperature lowers, they start to form dynamic,
branched, polymeric clusters with exactly half of the particles
in clusters on average at TΦ=1/2. As the temperature continues
to lower, the clustering speeds up until TΦ,infl is reached.
Eventually, system spanning clusters form at Tpperc=1/2, which
occurs at even lower temperatures. Finally, a maximum in the
heat capacity is observed at significantly lower temperatures
assuming that phase separation did not occur first. Compared
to the two spot model, the difference between TΦ=1/2 and TΦ,infl
is much greater,24 which could be predicted a priori given the
RMFT.

Perhaps the largest effect of ϵ i is its influence on
the relative locations of the polymerization transition lines
compared to the phase separation curves. When the patch
strength is much stronger than the isotropic strength, the
region in which clustering occurs is significantly larger and
extends to lower densities. This trend holds regardless of the
temperature reference used (see Sec. 3 in the supplementary
material48 for details).

B. Entropy and energy

In addition to determining the location of relevant
transition lines, we determine entropy and energy of
association using the RMFT and values for Φ, and thus
X , from simulation. Specifically, a rearrangement of Eq. (10)
yields a chemical equilibrium form of the formation of bonds
between two particles, which can then be used to identify an
equilibrium constant Kb as in Ref. 24,

1 − X
X2 = Mpρ∆ = ρKb. (23)

In turn, Kb can be used to extract both the energy ∆U and
entropy∆S via the Helmholtz free energy∆F for the formation
of the bonds between two particles,

ρKb = exp
(
−∆F

T

)
= exp

(
−∆U

T
+ ∆S

)
. (24)

Using the same functional form as the RMFT (see Eq. (22)),
the functional form of the equilibrium constant is

ρKb = Mpρ∆ = ρ

(
aΦ +

bΦϵ i

T

) �
e1/T − 1

�
. (25)

Here, aΦ and bΦ are parameters that are uniquely determined
within the RMFT by ρ and ϵ i. Assuming that e1/T ≫ 1, which
should hold for temperatures that are low enough to observe
self-assembly, e1/T − 1 can be approximated by e1/T allowing
for the determination of both the energy and the entropy
via thermodynamic definitions. The limit where aΦ ≫ bΦϵ i/T
permits the further approximations

∆U
T
=

1
T
∂(∆F/T)
∂(1/T) = −

1
T
− bΦϵ i

aΦT + bΦϵ i
≈ − 1

T
, (26)

FIG. 7. An Arrhenius plot to illustrate the ability to extract the energy and
entropy of self-assembly. Points are simulation data above the percolation
transition line, and the line is a theoretical prediction described in the text.

∆S = −∂∆F
∂T
= ln ρ + ln

(
aΦ +

bΦϵ i

T

)
− bΦϵ i

aΦT + bΦϵ i

≈ ln ρ + ln aΦ. (27)

Although this further approximation is not yet justified, its
value will become apparent. By combining Eqs. (23), (24),
(26), and (27), we find

ln Mpρ∆ = ln
(

1 − X
X2

)
=

1
T
+ ln ρ + ln aΦ. (28)

The above expression can be simplified by recasting
ln aΦ + ln ρ in terms of TΦ=1/2 (by plugging both T = TΦ=1/2
and X = 1 − Φ1/5 = 1 − (1/2)1/5 into Eq. (28) and solving for
ln aΦ + ln ρ). Plugging this result back into Eq. (28) yields the
simple form

ln Mpρ∆ = ln
(

1 − X
X2

)
=

1
T
− 1

TΦ=1/2
+ ln

�
21/5(21/5 − 1)� .

(29)

This functional form allows for the identification of both
the energy and the entropy through the use of an Arrhenius
plot (see Fig. 7). In particular, the entropy of association
becomes

∆S = − 1
TΦ=1/2

+ ln
�
21/5(21/5 − 1)� , (30)

where TΦ=1/2 is density dependent and the ln
�
21/5(21/5 − 1)�

term must be modified for a different choice of Mp. The points
are simulation results determined using Mpρ∆ = (1 − X)/X2

and the line is generated using Eq. (29). Due to the quality of
the fit, we can confirm the consistency of the approximations
and that a general graph of Mpρ∆ versus 1/T can be used to
extract the energy through the negative of the slope and the
entropy through the intercept. The implications of this scaling
for the interpretation of experimental data are discussed in
Sec. V.

C. Quantifying cluster size and shape

Having identified the entropy and energy of association
and thermally reversible polymerization transition lines, in
addition to the phase boundaries, we now focus on the cluster
distributions, as well as the cluster sizes and shapes under
different thermodynamic conditions from our simulations. In
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FIG. 8. Cluster size distributions for various parameters from simulations
(points). Dashed lines are predictions from Flory-Stockmayer theory given
the value of the order parameter and solid lines are fits from geometrical
percolation theory.

Fig. 8, we show the distribution p(M) of clusters of size M for
a wide range of temperatures, densities, and ϵ i for state points
above the percolation transition line. In order to characterize
these distributions, we make use of two different theories. The
first is a scaling framework that assumes the applicability of
geometrical percolation theory to our dynamically associating
particles;73 the second is Flory-Stockmayer74,75 mean-field
theory.

For non-percolating systems, the probability distribution
for observing clusters of size M within geometrical percolation
theory is given by

p(M) = M−τ exp(−M/µ)
Liτ(exp(−1/µ)) , (31)

where µ represents a metric of size and τ represents the
power law associated with the distribution. In Eq. (31), Liτ
is the polylogarithm function and results from normalization
so that the sum of p(M) over all values of M equals 1.
Treating τ and µ as free parameters, the fits using geometrical
percolation theory are shown as solid lines in Fig. 8. Within
geometrical percolation theory, the probability distribution
function formally applies up to the percolation transition,
at which point µ diverges and the probability distribution
becomes a power law. However, this approach requires two
fitting parameters and the variation of the fitting parameters
is not known a priori, since geometrical percolation theory
is based on a different type of percolation than observed in
our system. Thus, we also consider the applicability of the
mean-field theory of Flory and Stockmayer.74,75

Within Flory-Stockmayer theory, the probability distribu-
tion for observing clusters of size M is given by

p(M) = 10X2+3M(1 − X)M−1

5X − 3
(4M)!

(2 + 3M)!M!
. (32)

This equation assumes that no loops are formed, an assumption
that clearly becomes invalid at even moderate cluster sizes
(loops can be clearly seen in Fig. 4) and that the percolation
has not yet been reached. The later assumption is quantified
within the theory by requiring X be larger than its value

FIG. 9. Radius of gyration for various parameters (symbols are the same
as Fig. 8). System spanning clusters were not considered and at least five
samples were required for averages.

at percolation, 3/4. Since X is directly related to Φ (see
Eq. (21)), the Flory-Stockmayer cluster distributions can
be generated from knowledge of Φ from the simulations
and thus requires no fitting parameters. These predictions
are shown in Fig. 8 as dashed lines. Despite the fact that
the assumptions for Flory-Stockmayer do not apply for
small M , the predictions are in good agreement with the
simulations, suggesting that Flory-Stockmayer theory may
be used to gain further insight into the system regardless
of its approximate nature. The highly attractive feature of
Flory-Stockmayer theory is that it can roughly reproduce the
correct distribution with minimal information. Specifically,
since there is only one parameter, this parameter can be
determined through knowledge of only the average cluster
size ⟨M⟩ (see Eq. (33)) meaning that a good estimate of
p(M) can be determined from a single experimental measure-
ment.

We also explore the shape of the branched, polymeric
clusters from our simulations. We do not include system
spanning clusters. As can be seen in Fig. 9, the radius of
gyration Rg scales as M to a power near ν ≈ 1/2 for a
wide range of conditions, including different temperatures,
densities, and ϵ i. This means that the fractal dimension of the
non-percolating clusters d f = 1/ν ≈ 2, which is the known
value for lattice animals,76 but distinct from geometrical
percolation clusters where the fractal dimension is near 2.5.73

Lattice animals are in the same universality class as branched
polymers swollen by excluded volume interactions, while
geometrical percolation clusters are in the same universality
class as branched polymers with screened excluded volume
interactions or at their theta point.77 This suggests that our
clusters are in the swollen, branched polymer universality
class. For comparison, the mass scaling exponent for the
mean-field Flory-Stockmayer theory is 1/4, reflecting the
mean-field nature of this model and the large upper critical
dimension of 8, above which excluded volume interactions
can be neglected.73 Evidently, configurational fluctuations
lead to large deviations from mean-field predictions regarding
polymer size.

To further quantify the shapes of the clusters, we compute
the ratios of the average values of the eigenvalues of the radius
of gyration tensor for the same clusters, shown in Fig. 9. We
label the eigenvalues, λi such that λ1 ≤ λ2 ≤ λ3. Note that
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FIG. 10. Ratios of average eigenvalues of the radius of gyration tensor for
various parameters (symbols are the same as Fig. 8). The eigenvalues are
sorted by magnitude such that λ1 ≤ λ2 ≤ λ3. System spanning clusters were
not considered and at least five samples were required for averages.

by definition R2
g = λ1 + λ2 + λ3 or, equivalently, R2

g, i = λi.
The ratios are plotted in Fig. 10. For perfectly isotropic
clusters both ratios, λ3/λ1 = λ2/λ1 = 1. Small clusters are
highly anisotropic, but this is not surprising given that two
of the eigenvalues are zero for a dimer. As the cluster size
increases, the ratios asymptote to a result near the expected
value for lattice animals, rather than geometrical percolation
clusters.78 This finding is consistent with our analysis of
the fractal dimension. However, for clusters with very large
masses, it is reasonable to expect that the excluded volume
interactions would be screened, implying that the scaling
exponent should approach that of geometrical percolation
clusters due to screening of excluded volume interactions.
Finite size limitations do not permit a definite conclusion
regarding such a trend.

D. Universal descriptors of cluster size

Having quantified cluster size distributions, as well as the
cluster sizes and shapes from simulation, we investigate the
average cluster size ⟨M⟩, which we plot as a function of density
for various temperatures in Fig. 11(a). We observe larger
average cluster sizes both at lower temperatures and higher
densities. Such trends follow intuition and qualitatively accord
with experimental results for the average size of lysozyme
clusters.20 If we plot ⟨M⟩ as a function of the order parameter
Φ instead of density, ⟨M⟩ for all densities, temperatures, and ϵ i
above the percolation transition line roughly follow a master
curve as can be seen in Fig. 11(b). Using Flory-Stockmayer
theory, this relationship equals79

⟨M⟩ = 2
5X − 3

, (33)

where X is determined by Φ = 1 − X5. This relation is
expected to hold for X > 3/4 or equivalently, Φ ≤ 0.763.
As can be seen from Fig. 11(b), Flory-Stockmayer theory
agrees nearly perfectly with our simulation results within the
range in which it is applicable. A linear plot can also be
generated by plotting 1/⟨M⟩ versus X as shown in Sec. 4
in the supplementary material.48 For larger values of Φ, the

FIG. 11. (a) The average cluster size for various temperatures as a function of
density from simulations. The interaction strength was chosen to be ϵi= 0.1.
(b) Average cluster size as a function of the order parameter from simulations.
The line is the prediction from Flory-Stockmayer theory, does not include any
fitting parameters. The extension of the line beyond its validity of Φ ≤ 0.763
is in gray.

relation breaks down, due to both the formation of percolating
clusters and the presence of loops.

We now explore if we can obtain a universal description
of the T dependence of ⟨M⟩. Inspired by the Arrhenius
description, which clearly links ⟨M⟩, and thus X , to T , we
plot ⟨M⟩ as a function of 1/T − 1/TΦ=1/2 in Fig. 12 yielding a
master curve. This master curve follows the expected function,
shown as a black line. The function is determined by solving
Eq. (29) for X and then plugging the result in Eq. (33). Small
deviations at larger values of 1/T are due to the breakdown of
the Flory-Stockmayer relation (Eq. (33)).

Similar to the universal 1/T − 1/TΦ=1/2 dependence of
⟨M⟩, we consider if the characteristic cluster size parameter
µ from percolation theory (see Eq. (31)) also has a master
curve (the inset to Fig. 12). Here the data reduction is not a

FIG. 12. (a) Average cluster size and (b) the fitting parameter µ in geo-
metrical percolation theory as a function of inverse temperature minus the
inverse of the Φ= 1/2 polymerization transition temperature for all densities,
temperatures, and ϵi above the percolation transition. Points correspond to
simulation data. The solid lines describe the shape of the master and master-
like curves, while the dashed line represents the Flory-Stockmayer prediction
of µ without any fitting parameters (see text for details). The line in gray
denotes an extension of the curve beyond its range of validity.
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true master curve, as there are small but systematic deviations
for different interaction strengths. To provide an approximate
analytic form for the T dependence of µ and ⟨M⟩ that would
be valuable for describing experimental data, we again turn to
the Flory-Stockmayer theory, since, despite its deficiencies,
it is able to provide physical insight into the cluster size
distribution and cluster size average. Specifically, in the
large M limit Flory-Stockmayer theory reduces to the closed
form,

p(M) = 20X2(1 − X)−1

9
√

6π(5X − 3) M−
5
2 exp

(
−M ln

(
27

256X3(1 − X)
))

.

(34)

Comparing the above equation with the probability distri-
bution expected from geometrical percolation theory (see
Eq. (31)), one finds the Flory-Stockmayer result corresponds
to τ = 5/2 and

µ =

(
− ln

�
X3(1 − X)� + ln

(
27
256

))−1

. (35)

Although Flory-Stockmayer predicts τ = 5/2, our fits indicate
that it ranges from roughly 1.7 to 2 for T > TΦ=1/2, which is
consistent with the expected range for lattice animals78 and
consistent with branched dynamic immobile particle clusters
observed in simulations of glass-forming polymer liquids.82

This exponent range for τ deviates from 2.18, the expected
value from geometric percolation theory describing randomly
placed non-interacting particles.73 Again we have evidence
that our dynamic clusters are not percolation clusters.

In our quantification of the relationship between µ and
temperature, we consider only the functional form for µ
suggested by Flory-Stockmayer theory. Accordingly, we let
ln(27/256) become a fitting parameter y and find that a fit
of − ln(X3(1 − X)) versus 1/µ yields y = −2.146 ± 0.003, as
compared to the Flory-Stockmayer prediction of −2.249. The
results of this fit, which relate µ to X can then be combined
with the relationship between X and 1/T − 1/TΦ=1/2 to yield
the black line in the inset of Fig. 12. This fit is due to only one
fitting parameter (i.e., y). For comparison, we plot the Flory-
Stockmayer relationship without the fitting parameter y as a
dashed line. Clearly, the fit yields a significantly improved
prediction. However, this fit will breakdown completely
for values of µ that are much larger (Φ ≤ 0.76), since
Flory-Stockmayer theory breaks down before the percolation
transition line is reached. Nonetheless, within the range
plotted in the inset of Fig. 12, the fit is rather impres-
sive.

These comparisons of Flory-Stockmayer theory with
geometrical percolation theory can provide insight into how
our system relates to geometrical percolation. Overall, the
combination of Flory-Stockmayer theory and geometrical
percolation theory allows for an understanding of master-like
curves for two different metrics of cluster size (⟨M⟩ and µ).
Additionally, we can conclude that the properties of the
clusters at temperatures above the percolation transition line
are independent of ϵ i and can be quantified. Thus, the
main effect of ϵ i is to control the value of Φ for a given
temperature and density, which then specifies all the cluster
properties.

V. THEORETICAL FRAMEWORK
FOR CHARACTERIZING
SELF-ASSEMBLING SYSTEMS

In Sec. IV, we introduced a simple form of the average
cluster size ⟨M⟩ and expressions for extracting the energy
and entropy of association that are applicable to particles ex-
hibiting multi-functional association. We now show how this
framework can be adapted to allow for the determination of the
energy and entropy from experimental measurements. Specif-
ically, an Arrhenius plot such as that in Fig. 7 can be now
generated using the experimental molecular weight. The rela-
tionship between ⟨M⟩ (number average molecular weight) and
X and between X and Mpρ∆ in principle allows for the gener-
ation of an Arrhenius plot. However, in practice, it is typically
the weight averaged molecular weight Mw that is measured
experimentally. In particular, static light scattering coupled
with the assumption of a fractal dimension of 2 (required for
consistency with our results) can be used to extract Mw in a
dynamically associating system.80,81 However, an Arrhenius
plot, such as that in Fig. 7 can still be generated by linking
Mw to X , which is straightforward within Flory-Stockmayer
theory. For five spots, the y-axis is defined by the relation

ln Mpρ∆ = ln
10⟨M⟩(⟨M⟩ − 1)
(3⟨M⟩ + 2)2 = ln

M2
w − 1

(3Mw + 2)2 , (36)

which, when plotted as a function of 1/T , should be linear.
However, in general the number of spots may not be five. Thus,
the above expression can be generalized and the linearity of
such a plot can be used to identify the effective number of
spots in the system,

ln Mpρ∆ = ln
2Mp⟨M⟩(⟨M⟩ − 1)
((Mp − 2)⟨M⟩ + 2)2

= ln
(Mw − 1)(Mw(Mp − 1) + 1)

(Mw(Mp − 2) + 2)2 . (37)

Once the effective number of spots is determined, the energetic
and entropic parameters can be extracted. Specifically, the
slope of the line in the Arrhenius plot yields the energy
of association, while the intercept yields the entropy of
association divided by kB. Note that the discussion in Sec. IV B
uses simulation, rather than experimental units. The entropy
can also be used to extract the transition temperature TΦ=1/2
using a generalization of Eq. (30) to an arbitrary number
of spots. A full discussion of the extension of the above
framework to an arbitrary number of spots will be the subject
of a future paper. Thus, using only average molecular weight
data for various temperatures and initial concentrations, the
effective number of spots, the energy of association, the
entropy of association as a function of density, the transition
temperature TΦ=1/2 as a function of density, and the rough
cluster size distribution (assuming Flory-Stockmayer theory)
can all be determined.

The above analysis hinges on the definition of clusters
defined solely on the basis of the patch interactions rather than
the isotropic interaction. However, our choice is reasonable
because the value of the structure factor at small wavevectors,
which is related to the molecular weight, increases as the
temperature drops below the transition lines. Such a change
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in the structure factor is not observed if transition lines
are defined using isotropic rather than patch interactions,
confirming the validity of our choice.

Additionally, relevant physical quantities can in principle
be extracted from the determination of the second osmotic
virial coefficient B2 as a function of temperature. Specifically,
the patch size δ, isotropic well depth ϵ i, and range of the
isotropic interaction λ can be determined. However, the
experimental system must be at conditions, such as high
salt concentration, where the dominant isotropic interactions
are short ranged and where only unassociated proteins or
particles are present.

VI. CONCLUSIONS

Using both simulations and a RMFT, we identify
phase coexistence curves of five patch particles with an
additional isotropic interaction for a wide range of relative
interaction strengths. Although RMFT overpredicts the critical
temperature for larger values of isotropic interaction strength
ϵ i, we can predict this overestimate using only information
from the RMFT and the purely isotropic case. Specifically,
we find that the effective coordination number is larger
for larger values of ϵ i, which explains why the mean-field
model, RMFT, performs better in this limit. The prediction
also allows for better estimates of phase boundaries using
only RMFT. Additionally, we use three different metrics, the
extent of clustering, percolation probability, and heat capacity,
to define polymerization transition lines that delineate the
phase diagram into characteristic regions. We also find
that the largest effect of the isotropic interactions was on
the relative location of the phase separation boundaries
relative to the clustering transition lines, with the largest
regions of clustering occurring for the smallest values
of ϵ i.

We provide a method for extracting the energy and
entropy of association, and we analyze the cluster size distri-
butions, sizes, and shapes for different densities, temperatures,
and interaction strengths. Cluster size distributions and related
quantities are explored in the context of two different theories,
Flory-Stockmayer and geometrical percolation theory, both
of which yield different information. Using the radius of
gyration tensor, we determine that the clusters are like
lattice animals—they have a fractal dimension of two and
are anisotropic with roughly the expected ratios of average
eigenvalues for the radius of gyration tensor. Since lattice
animals are in the same class as swollen, randomly branched
polymers, the clusters formed can be thought of as equilibrium,
swollen, branched polymers. Finally, we identify a master
curve for average cluster size and a master-like curve for the
cluster size parameter from geometrical percolation theory.
By combining knowledge from RMFT, Flory-Stockmayer
theory, and geometrical percolation theory, we quantify the
curves using no fitting parameters for the average cluster size
and a single fitting parameter for the cluster size parameter
from geometrical percolation theory. Consequently, cluster
shape, size, and distributions within the clustering regions are
controlled primarily by the extent of clustering, Φ, rather than
the temperature, density, or interaction strength directly.

We expect that our results will provide insight into
clustering phenomena in general both in the protein and
colloidal contexts, since we provide frameworks in which
to quantify observed clustering and, thus, make predictions
about the system as discussed in detail in Sec. V.
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