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Abstract: The functionalization of nanoparticles (NPs) with DNA has proven to be an effective strategy
for self-assembly of NPs into superlattices with a broad range of lattice symmetries. By combining
this strategy with the DNA origami approach, the possible lattice structures have been expanded to
include the cubic diamond lattice. This symmetry is of particular interest, both due to the inherent
synthesis challenges, as well as the potential valuable optical properties, including a complete band-gap.
Using these lattices in functional devices requires a robust and stable lattice. Here, we use molecular
simulations to investigate how NP size and DNA stiffness affect the structure, stability, and crystallite
shape of NP superlattices with diamond symmetry. We use the Wulff construction method to predict the
equilibrium crystallite shape of the cubic diamond lattice. We find that, due to reorientation of surface
particles, it is possible to create bonds at the surface with dangling DNA links on the interior, thereby
reducing surface energy. Consequently, the crystallite shape depends on the degree to which such surface
reorientation is possible, which is sensitive to DNA stiffness. Further, we determine dependence of the
lattice stability on NP size and DNA stiffness by evaluating relative Gibbs free energy. We find that the
free energy is dominated by the entropic component. Increasing NP size or DNA stiffness increases free
energy, and thus decreases the relative stability of lattices. On the other hand, increasing DNA stiffness
results in a more precisely defined lattice structure. Thus, there is a trade off between structure and
stability of the lattice. Our findings should assist experimental design for controlling lattice stability and
crystallite shape.

Keywords: DNA nanotechnology; self-assembly; nanoparticle superlattice

1. Introduction

Nanoparticle (NP) assemblies have numerous demonstrated and predicted applications, such as
optical or electronic materials, biosensing, drug delivery and others [1–4]. For many of these applications,
an ordered structure of NPs, rather than an amorphous structure, is preferred or even necessary [5–8].
The order of NPs can be controlled by functionalizing NPs with polymers or DNA. The specific recognition
and sequence control offered by DNA has made it a particularly useful choice. In this approach, NPs are
functionalized with DNA that have “sticky ends” where single-stranded (ss) DNA can hybridize to form
a bond that directly links NPs [9–13]. The crystallization of particles mediated by DNA interactions was
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first realized in micron-scaled colloidal particles [14], and subsequently for NPs [15,16]. Alternatively,
DNA origami methods have also been used to create 2d or 3d structures [3,17,18] that serve as building
block for the lattices [19–23].

There have been significant advances in creating NP lattices with a broad range of lattice
symmetries and lattice spacings [12,13,15,16,24]. Because the NPs are usually functionalized uniformly,
their interactions are correspondingly isotropic. As a result, the lattices realized correspond to close-packed
structures where NP have eight or more nearest neighbors. Creating ordered structures for open lattices
(coordination number less than 6) has proved more challenging. In particular, one important symmetry
that proved elusive for NP assembly strategies is the diamond lattice. Moreover, cubic diamond (CD)
lattices with nm scale spacing are predicted to have interesting optical properties [4,25], such as a complete
optical band gap in 3D [5]. In traditional atomic and molecular systems, such low coordination lattices
require directional interactions. Although theoretical and computational studies have shown it is possible
to create a cubic diamond lattice by an isotropic potential [26,27], creating such a potential using uniformly
functionalized NPs can be challenging. To overcome the challenge of assembling low-coordination lattices,
we combined the DNA origami method with NPs to create DNA-functionalized NPs with directional
interactions that are able to self-assemble into CD symmetry [28], opening the possibility to realize these
novel materials. The methods to create NPs with customizable directional interactions is an area of ongoing
research [29,30]. Other experimental methods of synthesizing CD lattices have been proposed [31,32].
While in this work we use direct DNA hybridization between origami and DNA-functionalized NP to
create a 3D ordered structure, DNA origami can be used in different ways to create ordered structure of NPs
(such as using electrostatic interactions between NPs and DNA origami rather than DNA hybridization [33],
or creating an ordered 3D framework from DNA origami to host NPs [34]).

In order to better control the properties of diamond structured NP lattices, we need an improved
understanding of the factors that control lattice stability and crystallite shape. NP size can potentially alter both
the lattice stability as well as the optical properties of lattices, both due to changes in the NP optical properties
and changes of the lattice spacing. In this work, we study the relative stability of CD superlattices as a function
of NP size and DNA stiffness using molecular dynamics (MD) simulations. We evaluate the relative stability of
lattices based on their free energy. We find that entropic effects dominate the changes of free energy. We break
the entropic effects into the contributions from the translational and rotational degrees of freedom. We find
that the translational entropy stabilizes the lattice as the NP size increases; in contrast, the rotational degrees
of freedom have a destabilizing effect as the NP size increases. The contributions to the entropy from the
rotational orientation outweigh those of the translational degrees of freedom. We show that we can enhance
the lattice stability (lower free energy) by increasing the flexibility of the DNA strands, which in turn, increases
the contribution from the rotational entropy. On the other hand, increasing the flexibility results in a less
well-defined structure. Thus, from a design perspective, there is a balance between enhancing stability and
optimizing the desired order. The important role played by entropy in diamond packings has been recognized
previously [35,36]. For example, Ref. [35] showed that the degree of truncation of tetrahedra, similar to the
functionalized NP we study, is central to the packing (entropic effects) that determine the stability of the
CD lattices.

We also evaluate the equilibrium shape of the cubic diamond crystallites using the Wulff
construction [37]. The Wulff construction predicts crystallite shape based on the surface free energy.
Since the experimental method for making NP lattices is a quasi-static process, the equilibrium shape
should correspond to the crystallite shape in experiments [38,39]. In most cases, the simulation results for
surface energy can be anticipated from a simple approximation for the number of broken bonds along any
crystal face. However, we find that when the DNA are flexible enough to allow reorientation at the surface,
alternate bonds form that reduce the surface energy, and the resulting predicted crystallite shape can be
different from that expected for atomic systems with diamond structure (e.g., diamond, Si, or SiO2) [40–42].
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The manuscript is ordered as follows: Section 2 explains the model for DNA, NP and tetrahedral
cages and the MD simulation methods. In Section 3.1, we discuss the equilibrium shape of the crystallite,
Section 3.2 explains the theory and the results for the relative stability as a function of particle size and
DNA stiffness. We briefly conclude in Section 4.

2. Materials and Methods

A four-coordinated CD lattice typically requires highly directional interactions. Experimentally,
directional NP interactions were realized by placing a spherical NP in the middle of a tetrahedral cage made
by DNA origami methods [28]. These directional NPs are combined with isotropically DNA-functionalized
NPs to create CD lattices. To determine the relative stability of CD lattices created using this approach,
we use a simple coarse-grained model to mimic the experimental system studied in ref. [28]. The details of
this model are described in the following.

2.1. Tetrahedral Cage Model

We first describe how we mimic the tetrahedral DNA origami “cages” that were experimentally used
to create tetra-functional NP; see Figure 1a for a schematic of the experimental system. Experimentally,
the edges of the tetrahedral cage are constructed from “bundles” of 10 double-stranded (ds) DNA that
are linked together to form relatively rigid “beams” [28]; the cross-section of these bundled beams is
roughly rectangular. Since the individual DNA strands play no functional role in the edges other than
structural integrity, in our coarse-grained model we simplify by representing each edge of the tetrahedral
cage by seven beads with a diameter comparable to that of the dsDNA bundles (Figure 1b); specifically,
the diameter of the particles corresponds to average of the side of a bundle cross-section. Each tetrahedral
site on the edge of the tetrahedral (black beads in Figure 1b) is described by a Weeks–Chandler–Andersen
(WCA) potential with particle diameter 9.9σ. Following [43], the diameter can be approximately mapped
to real units with σ ≈ 0.65 nm. Particles along the edge are linked by a finitely extensible nonlinear elastic
(FENE) potential

VFENE = −
kbR2
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ln
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For the standard FENE potential, ∆ = 0, σ = 1, and R0 is the maximum bond length. Here, ∆ is a shift
in the equilibrium bond length and R0 + ∆ is the maximum bond length. See Table 1 for parameters.

To make the edges more rigid, next-nearest neighbor edge particles are also bonded via a FENE potential
with a bond length chosen to prefer linearity among triplets. As Figure 1b shows, the vertices of the tetrahedral
cage are truncated, and consist of three particles, tethered to a fourth bead (blue bonds in Figure 1b) that
represents the first nucleotide of the DNA linker connected to the tetrahedron. The three vertex beads are
linked both to each other (red bonds in Figure 1b), and to edge beads of the cage. Finally, there is a particle at the
center of the tetrahedral cage that is described by a WCA potential with particle diameter of 40σ. To improve
the rigidity of the cage structure, we include a bond between the first bead of the DNA at the vertex and the
particle at the center of tetrahedron (yellow bonds in Figure 1b). The details of these interactions and their
coefficients are provided in Table 1.
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Figure 1. (a) Schematic of the tetrahedral cage used in previous experiments [28]. Each dsDNA in the
tetrahedral edge is represented by gray cylinder. The figure also shows the cross-section of an edge to
indicate relative positions of ten dsDNA bundles. The blue lines indicate ssDNA linkers at the vertices,
and the green lines are the ssDNA linkers used to attach a NP at the cage core. (b) Schematic of tetrahedral
cage bond structure used in the MD simulation. The spheres show the particle positions and the lines show
the bonds between particles. Different colors shows different bonds explained in the main text. The sphere
sizes are not representative of the actual size of particles. (c) The schematic of NP used in the MD simulation.
Small spheres show the position of the vertices, and the large sphere shows the central particles and the
lines show the bonds between vertices. (d) A simulation snapshot of the full lattice structure; the edges
appear “ragged” owing to the representation of periodic boundary conditions.

In order to have a tetrahedral edge that mimics the rod-like nature of the tetrahedral edges in the
experiment, we choose the bond length (7.32σ) between edge monomers somewhat smaller than the
size of the excluded volume interactions (9.9σ) of these monomers, so that their exclusion zones overlap.
For nearest neighbor edge monomers, there are no non-bonded interactions to avoid large values of the pair
interactions due to this overlap. At each vertex, there is a ssDNA attached to the tetrahedron. The DNA
model is described in a subsequent section. This DNA has two distinct regions: a spacer region of seven
nucleotides that has no complement, and a “sticky” region of eight nucleotides that are complementary to
the ssDNA attached to NP. The DNA sequence is chosen in such a way that it can only connect with the
DNA of NPs, and cannot bond to the DNA of the other tetrahedra. To ensure that DNA strands are roughly
normal to the vertex of the tetrahedron, we use an angle bond potential Vangle = ka (1 + cos(θ)) where θ is
the angle made between the DNA site at the vertex of the tetrahedron with the center of tetrahedron and
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the next DNA site. The strength of the stiffness, ka, varies between 0.5 and 2.0 for different systems similar
to the DNA stiffness. Finally, there is a force site at the core of the tetrahedron to ensure excluded volume
with the strands, which we describe in the section on pair interactions of the DNA.

Table 1. The bond potential parameters for the tetrahedral cage and NP force sites. For the NP bonds
∆ = d/2 − 0.96, where d is NP diameter and 0.96 is the minimum of FENE potential when ∆ = 0,
which insures that the minimum of bond potential is at d/2. The distance between vertices of dodecahedron
is l = d/2.8, where d is the dodecahedron circumscribed sphere’s diameter.

Particle Type Bond kb R0 ε ∆

Tetrahedral cage Edge beads, first neighbor 240 1.5 8 6.36
Edge beads, second neighbor 240 1.5 8 13.67
Vertex to center 240 1.5 8 36.52
Vertex to edge 30 1.5 1 15.08
Edge to edge 30 1.5 1 9.15

Nanoparticle Center to vertex 30 1.5 1
d
2
− 0.96

Vertex to vertex 30 1.5 1 l − 0.96

2.2. Nanoparticle Model

To mimic the polyhedral shape of a typical nanoparticle, we model a NP by a collection of 20 force sites
located at the vertices of a dodecahedron. Each dodecahedral site is also described by the WCA potential
used for tetrahedral sites, but with diamater σ = 1. In addition, there is a force site at the center of the
dodecahedron, for a total of 21 force sites for each NP. Each vertex site is bonded via the FENE potential to
the nearest neighbor vertices and to the center of the dodecahedron. The bonds are stiff so that the NP is
rigid and maintains its shape during the simulation. Since the sites on the vertices are small relative to the
dodecahedron, we include an excluded volume interaction with the NP center with a range corresponding
to the inscribed sphere of the dodecahedron (see Table 2). There are ssDNA attached to each vertex,
for a total of 20 ssDNA attached to each NP. Each DNA strand consists of 15 nucleotides: seven spacers
and eight linkers. The sequence for the sticky ends of DNA is chosen so that NP can only bond with
a tetrahedral cage and cannot bond to other NPs. The values for FENE bonds are given in Table 1. To ensure
that DNA strands are roughly normal to the vertex of the dodecahedron, we use an angle bond potential
Vangle = ka (1 + cos(θ)) where θ is the angle made between the DNA site at the vertex of the NP with
the center of NP and the next DNA site; these angle interactions are identical to those used for the DNA
attached to the tetrahedral cages.

2.3. DNA Model

For DNA, we use a simple two-site coarse-grained model that was previously developed to describe
DNA-functionalized NP assemblies [28,43,44]. In this model, each DNA nucleotide consists of two force
sites: (i) the sugar and phosphate back-bone and (ii) the nucleobase site. The backbone sites are bonded to
each other, as well as to a nucleobase with a FENE bond to create ssDNA. The only attractive interactions
are between nucleobases (A-T or C-G) of distinct ssDNA strands, which leads to the formation of dsDNA.
For details of this model, please refer to refs. [43–45]. We present most results in Lennard–Jones (LJ)
reduced units, where the unit of length is given in terms of σ (diameter of the DNA backbone beads),
temperature is in units of ε/kB, and time is in the units of σ

√
m/ε.
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The pair interactions between different units—sites of the tetrahedral cages, NPs, or DNA—are given
by an expanded WCA potential

Vexpand
WCA (rij) = 4ε

( σ

rij − ∆ij

)12

−
(

σ

rij − ∆ij

)6
 (2)

where ∆ij = (di + dj)/2− 21/6σ, where di and dj are the diamaters of particles i and j. The additional shift
of ∆ij by 21/6 ensures the particle repulsion occurs for any rij < (di + dj)/2. Interactions are truncated for
rj > ∆ij + 21/6σ to avoid attractions. The values of particles diameters are given in the Table 2.

Table 2. The particle diameter for excluded volume interactions given by Equation (2). For details about
the interactions between DNA sites see ref. [43].

Particle Type Diameter (σ)

Tetrahedral cage, edge particles 9.9
Tetrahedral cage, central particle 40
NP, central particle ranging between 40 to 120
DNA backbone 1

2.4. Simulations and Lattice Preparation

We simulate the coarse-grained model via molecular dynamics (MD) calculations, carried out using
the LAMMPS simulation suite [46]. To examine the stability of CD lattices, we first create defect free,
fully bonded lattices. The lattice consists of 64 tetrahedral cages and 64 NPs, yielding a regular triclinic
box (non-orthogonal with equal size lengths and an equal angle of 60◦ between sides) of 64 primitive unit
cells. Since the cubic diamond lattice can be considered as two identical inter-penetrating FCC lattices
(with a shift of b/4 in each direction, where b is the FCC lattice constant), each particle type (tetrahedron
or NP) is organized in an FCC lattice.

To create a CD lattice with DNA fully linked among NP and tetrahedra, we follow a two-step
procedure. First, we simulate a single unit cell to form the links between the DNA strands connecting
a NP and tetrahedron. We position the centers of the NP and tetrahedron at the ideal lattice positions for
the CD structure (points (0,0,0) and (b/4, b/4, b/4) and link the center of the NP or tetrahedron to the
lattice position via a strong harmonic potential. Since the NP is modeled as a dodecahedron (and each
dodecahedron implicitly includes five co-centered tetrahedra), it is possible to create DNA links between
one of these implicit tetrahedra of the dodecahedron and tetrahedral cage with no stress. The lattice
constant b is chosen to geometrically allow for a connection between the NP and tetrahedron to form only
along the nearest linking strand, preventing the formation of defects in this unit cell; this linked strand
will not be stress free, but we will release this constraint later. We then perform a MD simulation of the
primitive unit cell in a triclinic box with periodic boundary conditions in an NVT ensemble at temperature
0.09 (below the DNA melting temperature TM). In the second step we replicate the fully bonded primitive
cell generated in step 1 (with unwrapped periodic boundary conditions) to create a 4 by 4 by 4 lattice.
We then remove the harmonic constraint on the central particles so they can freely move and simulate
the lattice in an NPT ensemble at zero pressure and T = 0.09 to ensure there is no external stress on the
DNA linkers.

We use zero pressure since the osmotic pressure in experiments is very small. To study systems with
different NP sizes, we change only the size of the isotropically functionalized NP, not the tetrahedral
cage size, since NP size is more readily varied experimentally. We perform simulations for particle sizes
ranging from d = 40σ to 120σ, mapping to ≈26–78 nm in diameter. The simulations were performed
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for at least 4× 108 timesteps, where each timestep is 0.003. All of the parameters are given in LJ units.
We use a Nose–Hoover thermostat and barostat in the simulation. The damping factors for thermostat and
barostat are 1.0 and 3.0, respectively.

2.5. Surface Energy Calculation

To find the crystallite shape of the CD lattice, we use the Wulff construction method. This method
requires the values of surface energy for different crystalline plane symmetries. To evaluate the surface
energy of crystal facets with different symmetries, we must create lattices that are non-periodic in the
direction normal to the facet under consideration. We use the same procedure employed for the periodic
lattices just described to create fully bonded lattices with an exposed face. The system consists of a slab of
diamond lattice that is periodic in the plane parallel to two lattice vectors, and non-periodic normal to the
free surface (z direction). We again use P = 0 after the initial defect-free lattice is formed. We consider three
different symmetries of the exposed face: (100), (110), or (111). Depending on the symmetry of the lattice
plane, we used either a cubic (100) or triclinic box (110 and 111). For triclinic boxes, the angle between c
(the unit-cell vector in the z direction) and the other 2 unit-cell vectors is 90◦; a and b (unit-cell vectors)
lie in the xy plane. The size and angle between a and b are determined by the symmetry of plane. For the
smallest system considered, the surface consists of 16 NPs, and the slab consists of eight layers transverse to
the surface (four layers each of NP and tetrahedra). Each system consists of at least 128 NPs and tetrahedra
in total. To check if our results are affected by the finite size of the slab, we performed simulations with
six, eight, or ten layers of NPs for the 111 facet. The surface energy for different thicknesses was constant
within the limits of uncertainty of the calculation, so we do not anticipate any finite size effects in our
reported results.

3. Results & Discussion

3.1. Crystallite Shape from the Wulff Construction

To find the equilibrium shape of the crystallite, one should find the shape that minimizes the surface
free energy of the crystallite for a given volume. The Wulff construction is a method to determine the
equilibrium shape of a lattice symmetry based on the ratio between the surface energy γ and the distance
` between the crystallite center and the facet plane. Specifically, the ratio of the surface energy γhlk of
the facet normal to the hlk direction to the distance `hlk of that facet from the crystallite center should be
constant for all facets with different symmetries. For each possible facet, one considers a plane, where the
normal to the plane is in the (hkl) direction, and the distance from the center to the facet is `. The subset of
these planes that enclose the smallest volume around the center determine the shape of the crystallite.

λ =
γhlk
`hlk

(3)

We focus on surface energies of the (100), (110) and (111) surfaces. Since NP only interact with
their nearest neighbors (short-ranged interaction), it is expected that the lower index planes are most
important [47]. The snapshot of the simulated systems is shown in Figure 2. For a given facet symmetry,
the suface energy will be determined by the number of broken links, which may depend of which of the
possible parallel planes is exposed. This is because, in the ideal CD lattice, all of tetrahedral cages have
the same orientation, but the opposite orientation from the NP, and all of the implicit tetrahedra of the
NPs (dodecahedron) share the same orientation. The net result is that there are two possible scenarios,
depending on the symmetry of the exposed face: (i) the number of broken bonds on the surface will
(ideally) be 2, and thus surface energy does not depend on the position on the plane; or (ii) the number of
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broken bonds can be either 1 or 3 (ideally), depending on which parallel plane is exposed. We choose the
plane that ideally leads to one broken bond, since this has lower energy. Because the tetrahedral cages and
internal tetrahedra in NPs are in opposite directions, in order to have one broken bond on both sides of the
slab, one surface will consist of tetrahedral cages, and the other will consist of NPs.

 

l I

I

(a) (b) (c)

Figure 2. The snapshots of MD simulation of different finite crystal slabs with surfaces along different
symmetry directions. (a) Top, the (110) surface, viewed normal to the free surface (z-direction); the bottom
panel is a side view. (b) Top, the (111) plane, viewed normal to the free surface (z-direction); the bottom
panel is a side view. (c) Top, the (100) plane, viewed normal to the free surface (z-direction); the bottom
panel is a side view. The extra DNA bonds are highlighted by red lines.

As described in the methods section, we can predict the surface energy of these interfaces from
a simple “broken bond” model, assuming no distortion of the crystal structure, and compare this
to a direct evaluation of surface energy from MD simulation, where interfaces may distort. In the
broken bond approximation, we simply count the number of broken bonds per unit area for the chosen
crystallographic plane and estimate the surface energy for each facet using the hybridization energy of
DNA. This counting exercise predicts that the (111) face should have the lowest surface energy, and in this
case, Wulff construction predicts the equilibrium crystallite is an octahedron, the same shape as atomic
systems with diamond structure (e.g., diamond, Si, or SiO2) [40].

To test the validity of the predictions from the broken bond approximation, we evaluate the surface
energy via MD simulations for slabs with facets of the same symmetries (100), (110), and (111) for NP
diameter 40 and for variable values ka of the DNA stiffness. We define the surface energy

γhlk =
Ehlk − Ebulk

2Ahlk
, (4)

where the Ei is the total energy of the simulated slab, Ebulk is the energy of bulk lattice, and Ai is the area of
exposed surface, and we express suface energies relative to the (111) plane so that we can easily compare to
the broken bond approximation. We find that the ratio γ110/γ111 from the MD simulation (1.22) is nearly
the same as predicted by the broken bond approximation (1.23), independent of the DNA stiffness. For the
(100) plane, the broken bond model predicts the relative surface energy γ100/γ111 = 1.73, and as a result
the (100) plane would have little impact on the crystallite shape. However, the MD simulations show
that γ100/γ111 is sensitive to DNA stiffness (Figure 3), and can deviate significantly from the broken bond
model prediction. For small stiffness, γ100/γ111 is substantially smaller than expected from the broken
bond approximation, and approaches the broken bond prediction for large stiffness. We can understand
the reduction of γ100/γ111 by the fact that flexible strands make it possible for some surface particles
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to reorient and form bonds with particles on the interior. Specifically, to create the (100) facet, we must
break two of four bonds for each surface particle that were intact in the bulk system; for tetrahedra at the
surface, they have enough flexibility at small ka to rotate towards NP in the interior layer, and create bonds
with some dangling free strands of the NP. This is only possible since the interior NP have many more
strands than are needed to create four bonds (the increase in the DNA strand density on the surface of NP
increases the probability of such bonds). Thus, when the NP are on the surface and tetrahedra are interior,
there will be no free DNA strands on the interior layer tetrahedra, since all tetrahedral cages inside the slab
are already bonded. Thus, for the (100) direction, we create interfaces with tetrahedral cages on both sides
of the slab, since this bonding through surface reorientation leads to a lower surface energy. See Figure 2c
for an illustration of this phenomenon.

The variation in the surface energy γ100/γ111 with DNA stiffness implies variability in the crystallite
shape, using the Wulff method. Given that γ110/γ111 = 1.22 independent of stiffness, the Wulff
construction predicts that the crystallite shape will vary from a simple cube (for γ100/γ111 . 0.57) to
a simple octahedron (for γ100/γ111 & 1.73). Figure 3 illustrates the expected crystallite shapes for the four
stiffness values examined. At the smallest ka = 0.5, the shape is an octahedron (111) (cyan) truncated at
the corners by a cube (100) (purple). As ka increases, the truncation by the octahedron increases, such for
ka ≥ 1.5, the shape is essentially octahedral, though a careful inspection shows that the (110) plane
(yellow) does slightly truncate the edges. This is also the shape predicted by the broken bond model.
The importance of the (111) and (100) planes in the crystallite shape of DNA-functionalized NP lattices
with diamond structure has been observed experimentally [31].

Exploiting the possibility of surface reorientation offers a path to control the crystallite shape.
One approach to affect the reorientation of particles, and consequently crystallite shape, is to change
the DNA stiffness as done here. Another possible approach is to use the DNA origami method to alter
the geometry of the cages, and thereby change the bonding ability of cages and NPs. The difference in
the number of possible DNA linking locations between the tetrahedra (four) and NP (20), coupled with
sufficient flexibility of the DNA, results in a more stable system (lower surface energy) when tetrahedral
cages are on the surface than when NPs are on the surface. Such increased stability should make the
crystallite more resistant to heterogeneous melting at the interface.

In this work, we have not studied the effect of DNA length on the stability of the lattice.
The importance of the DNA length on the stability and the quality of long-range order of the DNA-origami
cages lattices has been seen experimentally [24]. Furthermore, the effect of DNA length on the stability of
DNA-functionalized NP has been studied before [45].
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Figure 3. The surface energy of (100) plane as a function of DNA stiffness ka from MD simulations, and their
corresponding crystallite shapes. The shapes were generated using WulffMaker [48]. The cyan, purple and
yellow plane correspond to (111), (100) and (110) respectively. The (100) plane surface energy increases
as the DNA stiffness increases; as a result the contribution of (100) plane in determining the crystal shape
decreases. At the stiffness ka = 2.0, the crystallite shape is an octahedron. The contribution of (110) plane
(the yellow planes) is not significant.

3.2. Lattice Stability

3.2.1. Lattice Structure

Before we calculate the stability from the relative free energy, we provide a reference for the effects of
changing NP size and DNA stiffness on the crystal structure. To do so, we evaluate the structure factor

S(q) =
1
N

〈
N

∑
j 6=k

e−iq·(rj−rk)

〉
(5)

where rj is the position of the center of a NP or tetrahedral cage. Figure 4 shows S(q) for diamond lattices
for representative particle sizes and DNA backbone stiffness values; the stiffness (or persistance length)
is directly linked to salt concentration. For all systems, the simulated S(q) reproduces the theoretically
expected locations for at least the first 6 peaks of S(q), confirming the mechanical stability of the cubic
diamond lattice. The higher order peaks become “smeared” due to lattice vibrations. Figure 4a shows
that increasing the DNA stiffness (equivalent to lower salt concentration) results more sharply defined
peaks, which are discernable up to larger q values. For example, for stiffer DNA (ka = 2.0), we can
distinguish two peaks near q/q0 = 4.2, which for more flexible DNA (ka = 0.5) combine to single broad
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peak. Thus, as might be anticipated, increasing DNA stiffness results in a more precisely defined structure
of the lattice. Figure 4b shows that the lattice structure is only weakly affected by the NP size. The challenge
is to understand the balance between optimizing the precise structure of the lattice and its relative stability.
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Figure 4. The structure factor S(q) for the cubic diamond lattice. (a) The structure factor for different DNA
stiffness values. We label peaks by their corresponding Miller indices, known for the cubic diamond lattice.
For stiffer DNA, the specific peaks of S(q) can be discerned for larger values of q/q0 than for flexible DNA.
In this sense, the stiffer DNA results in a better structured lattice. (b) The structure factor for different NP
sizes. The effect of changing NP size on the structure is less pronounced than changing the DNA stiffness.
For clarity of the figure, data are shifted vertically.

3.2.2. Lattice Vibrational Spectrum

Since we are dealing with lattice systems, their free energy will be determined from the lattice
vibrational spectrum. In principle, we could directly evaluate the dispersion relation ω(q), but the
size of the system (up to 48896 force sites) and complexity of the potentials make the necessary matrix
diagonalization computationally infeasible. Thus, we need to consider a simplified representation of the
system. We expect that the vibrational spectrum is primarily encoded in the vibrational properties of the
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centers of mass of the NP and tetrahedra. Thus, we can coarse-grain the vibrational motion of the complete
system from our MD simulations to the vibrations of the centers of mass of the NPs and tetrahedral cages;
the mass of these sites corresponds to the total mass of NPs and tetrahedral cages (including DNA strands)
from the MD simulation. To obtain the dispersion relation, we use the dynamical matrix approach [49–53].
The dynamical matrix

D−1
µν (q) =

1
kBT
〈uµ(q)uν(q)〉 (6)

is defined by the correlation function of the Fourier transforms of the NP and tetrahedral coordinates uµ(q)
and uν(q) [54,55].

The dynamical matrix can be related to the normal mode dispersion relation by assuming a simplified
harmonic model for the interactions among the lattice sites [49,50]. Specifically, one assumes a simple
potential between lattice sites

V =
1
2

kr ∑
n

δr2
ij +

1
2

r0kθ ∑
n

δθ2
ijk, (7)

where we sum n over all of unit-cells, δrijis the distance between particles i and j relative to the ideal
separation r0, and δθijk is the angle (relative to its ideal value) between particles i and two nearest neighbors
j and k. The radial bond constant kr mimics the elasticity of the DNA bond between NPs and tetrahedral
cages, and kθ is related to the rotational degrees of freedom of sites around their centers. The constants kr

and kθ will be determined from the dynamical matrix. Specifically, the Fourier transform of the equation
of motion for the harmonic approximation to the potential can be written as

ω2 uµ,α(q) = ∑
ν,β

Dαβ
µν(q) uν,β(q), (8)

where ω is the frequency of vibration at wave vector q, µ and ν are particle indices, and α and β

are directions.
We directly calculate these frequencies ω using the dynamical matrix from the eigenvalue problem of

Equation (8). Since we have coarse-grained our simulation lattice to a 4× 4 lattice of NP and tetrahedra,
we are limited to just four different wave vectors q for each of six branches, the number of which is
determined by having two particles in each unit-cell. The symbols in Figure 5 shows the calculated ω for
the three lowest branches along the the most common symmetry directions, (100) and (111); there are only
two sets of points, since the two lowest branches are degenerate [51]. We focus on the lowest branches
because they have the most significant contribution to the free energy. Since the dynamical matrix is
related to the potential of Equation (7), its eigenvalues are functions of kr and kθ , and we can use our results
to estimate these parameters, and thus estimate the free energy. Based on data for the two directions,
(100) and (111), accounting for degeneracy, and that the origin is a common point among the symmetry
directions, we have a total of 13 unique points to determine kr and kθ . The solid lines in Figure 5 show the
resulting fit for the dispersion relation, which matches well with the available data. We will use these fit
values in the next section when we evaluate the free energy.
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Figure 5. The dispersion relation obtained from simulation and fit with theory [51] for the (100) and
(111) directions. The points are the values calculated from MD simulation based on the eigenvalues of
the dynamical matrix (Equation (8)). The solid line is the fit with the dispersion form given in ref. [51].
These data are for the system with DNA stiffness of ka = 1.0 and NP size d = 40σ. q̄ = qb/2π is the reduced
wave vector and b is the lattice constant.

3.2.3. Lattice Free Energy

We now proceed to evaluate the relative thermodynamic stability as a function of particle size and
DNA stiffness. To do so, we need to evaluate the change in Gibbs free energy ∆G = ∆E− T∆S + P∆V,
as a function of particle size or DNA stiffness. The smallest particle size (diameter 40σ) and smallest
stiffness (ka = 0.5) is chosen as the reference state, and the free energy for all other sizes is evaluated
relative to that system. Since we use P = 0, the P∆V term is not needed, and the Gibbs free energy reduces
to Helmholtz free energy.

To evaluate the lattice free energy, the Hamiltonian can be written in terms of the normal coordinates
of vibration in Fourier space,

H(q, λ) = |Pλ(q)|2 + ω2
λ(q)|Qλ(q)|2, (9)

where Pλ and Qλ are normal coordinates, and λ indicates different branches of the dispersion relation.
Based on this Hamiltonian, the Helmholtz free energy

F = −kBT ln

(
∑
λ

∫
e−βH(q,λ) dq

)
(10)

We have already numerically and analytically [51] evaluated the dispersion along the (100) and (111)
directions, and we can use the resulting fit values of kr and kθ to numerically calculate the free energy
when we integrate over all directions; the result is shown in Figure 6.

Our lattice free energy data (Figure 6) show that the relative free energy increases with increasing
NP size and with increasing DNA strand stiffness. In other words, the larger NP or stiffer strands have
a decreased relative thermodynamic stability. Recall that increasing stiffness results in a more precisely
defined diamond structure (Figure 4); thus, a balance must be struck between optimizing the structure
through DNA stiffness and the relative thermodynamic stability. The decrease in stability of lattices as
the NP size increases for faced-center cubic and body-centered cubic lattices has been seen in previous
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study [56] that is consistent with our findings for CD lattice. The effect of DNA stiffness in the context of
DNA grafting density (number of DNA linkers connecting the two NPs) has been studied previously [57].
However, changing the number of linkers also directly changes the enthalpy of the system. In the current
study, all of the DNA linkers on the tetrahedral cage are connected to NPs. Thus, increasing the grafting
density does not change the number of bonded DNA linkers, as a result, the effective stiffness of the
connections between particles is independent of the grafting density.
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Figure 6. Difference in free energy of the lattice for different DNA stiffness values as a function of NP size;
the reference system is the system with smallest NP size and ka = 0.5. Increasing NP size increases the
free energy, which means a relative decrease in stability. Similarly, increasing stiffness increases free energy
(reduces stability).

From a design perspective, it is helpful to know how different aspects of the lattice vibrations affect
the free energy. For example, how much of the stability originates from energetic versus entropic effects?
The free energy is separable into energetic and entropic contributions to ∆F = ∆E− T∆S. The energy can
be extracted directly from simulation the data, and ∆E is essentially independent of NP size and stiffness.
This is due to the fact that there are almost no non-bonded interactions with NP, unless NP are so large that
they overlap. Additionally, DNA bonding does not vary with NP size, so the DNA do not significantly
contribute to ∆E. Consequently, entropy is the controlling factor in the free energy.

We wish to parse the entropy into the contributions from the rotational and vibrational degrees
of freedom. In our dynamical matrix approach, the free energy (entropy) is a complicated function of
kr and kθ , and is defined only numerically when we integrate over all lattice directions. This makes it
difficult to study the effects of rotational and vibrational degrees of freedom separately. Although we
know intermolecular correlations contribute to the free energy, it is nonetheless useful to consider a simple
mean-field description that captures the essential features of the free energy from the more complex
dynamical matrix calculation. Specifically, we ignore correlations of the vibrations, and consider each NP
and tetrahedron as an independent oscillator. In this independent harmonic approximation,

V =
NNP

∑
i=1

(
1
2

kNP
trans∆r2

i +
1
2

kNP
rot ∆θ2

i

)
+

Ntet

∑
i=1

(
1
2

ktet
trans∆r2

i +
1
2

ktet
rot∆θ2

i

)
, (11)
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where ∆r2
i is the mean-square translational vibration of the centers of NP or tetrahedra, and ∆θ2 is the

mean-square angular vibration. In this harmonic representation, the force constants ktrans and krot can be
determined from the typical size of the lattice vibrations. ktrans and krot are related to, but distinct from kr

and kθ . Figure 7 shows the average time dependence of 〈r2(t)〉 and 〈θ2(t)〉 for both the tetrahedra and the
NP for many NP sizes at ka = 1.0; θ(t) is the angle between the vector defined from the center of a NP or
tetrahedron to a chosen vertex at times t0 and t0 + t (where t0 is an arbitrary initial time).
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Figure 7. The time dependence of the translational and rotational vibration of the tetrahedral cages
and NPs. The translational mean-squared displacement 〈r2(t)〉 for (a) NP and (b) tetrahedra are very
similar; the saturation value 〈u2〉 of the MSD increases for both NP and tetrahedra with increasing NP
size. The rotational mean-squared displacement 〈θ2(t)〉 for (c) NP and (d) tetrahedra differ significantly.
Specifically, the saturation value 〈φ2〉 for NP decreases as the NP size increases, while 〈φ2(t)〉 for tetrahedral
cages increases as the NP size increases. Note that dependence on NP size of the rotational MSD of NPs
is different than the other three MSDs. All data are for the system with stiffness ka = 1.0. The black, red,
green, blue and brown lines correspond to d = 40, 60, 80, 100, 120σ, respectively.

The vibrational amplitudes saturate at characteristic values 〈u2〉 for translations and 〈φ2〉 for rotations
for t & 104. In other words, lattice particles vibrate around fixed positions, with no diffusion of the
NPs or tetrahedra. Note that Figure 7a,b shows that 〈u2〉 is essentially the same for NP and tetrahedra,
while Figure 7c,d shows that 〈φ2〉 differs for NP and tetrahedra. To show these trends more clearly, Figure 8
shows 〈u2〉 and 〈φ2〉 for all NP sizes and DNA stiffness values. For the translational component 〈u2〉,
we average the contribution from the NP and tetrahedra, since the values for each are essentially identical.
In contrast, the rotational displacement 〈φ2〉 is significantly different for NP and tetrahedra. Specifically,
〈φ2〉 of NP decreases with increasing NP diameter, while 〈φ2〉 increases for tetrahedral cages as the NP
diameter increases. The opposite behavior of the angular displacement can be understood geometrically.
Specifically, we can relate 〈φ2〉 to an arc length s via 〈φ2〉 ≈ (2s/d)2 where d is the diameter of the NP
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or tetrahedron. Since the NP and tetrahedra are connected, the arc length s must be the same for either
particle type. Thus, as NP diameter increases, 〈φ2〉 will decrease for NP, even as it grows for tetrahedra.
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Figure 8. (a) The characteristic translational MSD 〈u2〉 of the NPs and tetrahedral cages as a function of NP
size for different DNA stiffness. (b) The characteristic rotational MSD 〈φ2〉 of NPs as a function of NP size
for different DNA stiffness. This decrease in 〈φ2〉 is the main factor decreasing the stability the CD lattice.
(c) The rotational MSD 〈φ2〉 of tetrahedral cages as a function of NP size for different DNA stiffness values.
The translational and rotational MSD decreases as the stiffness increases. The black, red, green and blue
lines correspond to ka = 0.5, 1.0, 1.5, 2.0 respectively.

Based on the independent oscillator approach, the relative entropy as a function of NP size or DNA
stiffness can be separated into translational and rotational degrees of freedom. In this approximation,
ktrans = 3kbT/〈u2〉, and the translational contribution to the entropy is

∆Strans =
3
2

kB

[
ln

(
〈u2〉
〈u2

ref〉

)
NP

+ ln

(
〈u2〉
〈u2

ref〉

)
tetra

]
. (12)
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The reference 〈u2
ref〉 corresponds to the system with a NP diameter 40σ. In principle, Equation (12)

should also contain a
T
〈u2〉

d〈u2〉
dT

term, but this term can be eliminated based on the T dependence of

〈u2〉; specifically, simulations show that the 〈u2〉 depends linearly on temperature (as would be expected
for nearly harmonic vibrations), provided we do not closely approach the melting temperature. Linear

T dependence of 〈u2〉 implies that
T
〈u2〉

d〈u2〉
dT

= 1, and independent of particle size. Similar to the

translational component, krot = 3kbT/〈φ2〉, and the relative entropy from the rotational degrees of
freedom is given by

∆Srot =
3
2

kB

[
ln

(
〈φ2〉
〈φ2

ref〉

)
NP

+ ln

(
〈φ2〉
〈φ2

ref〉

)
tetra

]
(13)

Based on the values obtained for 〈u2〉 and 〈φ2〉, we show the resulting contributions to the free energy
from the translational and rotational degrees of freedom for NP and tetrahedra (Figure 9). The contribution
to the entropy from translational degrees of freedom is the same for tetrahedra and NP, so we do not show
them separately; Figure 9a shows that −T∆Strans decreases with increasing NP size. Figure 9b shows that
the rotational contribution −T∆Srot has to opposite dependence on NP size—increasing free energy with
increasing size; we can further dissect the rotational contribution from NP and tetrahedra. For tetrahedra,
−T∆Srot shows the same qualitative behavior as −T∆Strans. In contrast, −T∆Srot for NP decreases with
increasing NP size. The reason for opposite behavior of the rotational entropy of NP and tetrahedra is
precisely the reason for the difference in 〈φ2〉, discussed previously. Given the overall increase in the free
energy with NP size, it is apparent that the dominant contribution to the free energy comes from rotations
of the NP. Thus, this is a natural term to target if one wishes to affect the relative stability of diamond
NP lattices.

The qualitative effects of DNA stiffness (determined experimentally from salt concentration) are
the same for all components: increasing stiffness decreases the entropy, and thus, increases free energy.
Moreover, the quantitative variation of the free energy with stiffness is simpler than is apparent in
Figure 9a,b. To illustrate this fact, we re-plot the contributions to the entropy for each stiffness value
relative to the entropy of the smallest NP with the same stiffness. Figure 9c shows that, when shifted this
way, the size dependence of the entropy is the same for all stiffness values. Thus, the effect of the stiffness,
at least over the range we have studied, is to introduce a simple shift of the entropy.
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Figure 9. (a) The change in the translational free energy −T∆Strans as a function of NP diameter for many
stiffness values. The free energy is reported relative to the reference system (d = 40σ and stiffness ka = 0.5).
(b) The change in the total rotational free energy −T∆Strans. (c) The translational free energy and rotational
free energy of NPs and tetrahedral cages as a function of NP size. Different stiffness values are plotted
relative to the smallest NP with the same stiffness, to eliminate shifts of free energy due to changes of
stiffness. The systems with different stiffness have the same behavior as a function of NP size, suggesting
that the DNA stiffness just shifts the free energy by a constant.

4. Conclusions

We studied the crystallite shape of the CD lattice. The specific design of the DNA-origami cage and
its effect on the number of bond sites leads to a reduction in the surface energy of specific symmetries,
and consequently alters the equilibrium crystallite shape. Specifically, the predicted shape of crystallite for
CD lattices without surface reorientation is an octahedron, which shifts to a cube-truncated octahedron
when surface reorientation is possible. We also have studied the effects of NP size and DNA stiffness on
the stability of the CD lattices. We found that the increase of stiffness and NP size (in the range of this
study) increase the free energy and consequently decrease the relative thermodynamic stability of these
lattices. On the other hand, the increase of stiffness improves the structure of these lattices. So there is
a potential trade off between having a well structured lattice or a more stable lattice. The less stiff DNA
leads to a more stable system, and this effect has seen previously in the patchy particles systems [58].
By separating the free energy into parts, we demonstrated that the rotational degrees of freedom of NPs are
the dominant factor reducing lattice stability as the NP size increases, while the other degrees of freedom
(rotation of tetrahedra and translational degrees of freedom of both types of particles) stabilize it.
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