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ABSTRACT: Whereas there has been extensive theoretical and experimental investigation of the properties
of linear polymer chains in solution, there has been far less work on sheet-like polymers having 2D
connectivity and 3D crumpled or collapsed shapes caused by thermal fluctuations, attractive self-interactions,
or both. Sheet-like polymers arise in a variety of contexts ranging from self-assembled biological membranes
(e.g., the spectrin network of red blood cells, microtubules, etc.) to nanocomposite additives to polymers (carbon
nanotubes, graphene, and clay sheets) and polymerizedmonolayers.We investigate the equilibriumproperties of
this broad class of polymers using a simple model of a sheet polymer with a locally square symmetry of the
connecting beads.We quantify the sheet morphology and the dilute-limit hydrodynamic solution properties as a
function of molecular mass and sheet stiffness. First, we reproduce the qualitative findings of previous work
indicating that variable sheet stiffness results in a wide variety of morphologies, including flat, crumpled or
collapsed spherical, cylindrical or tubular, and folded sheets that serve to characterize our particular 2Dpolymer
model. Transport properties are of significant interest in characterizing polymeric materials, and we provide the
first numerical computations of these properties for sheet polymers. Specifically, we calculate the intrinsic
viscosity and hydrodynamic radius of these sheet morphologies using a novel path-integration technique and
find good agreement of our numerical results with previous theoretical scaling predictions.

Introduction

The study of the solution properties of linear polymer chains
has formed the foundation of polymer science, and the charac-
terization of polymer properties through a range of solution
measurements remains a central activity in this field. Despite
extensive study, polymer science is by nomeans a closed field, and
there are many basic problems that remain open, especially in
relation to the transport properties of polymeric systems.

In the present work, we focus on the less well-studied case of
2D, or “sheet” polymers, that is, polymers that have 2D con-
nectivity but which can take a thermally crumpled or collapsed
configurations in 3D space, similar to linear polymers. Thin
elastic sheets form the basis for many materials across a wide
variety of fields and length scales.1-4 Such molecularly thin
membranes can be “fluid” with dynamic connectivity or “teth-
ered” with fixed connectivity.5 Examples of 2D polymers include
exfoliated and synthetic claymaterials,6-9 graphene10 or graphite
oxide sheets,11-13 carbon nanotubes,14-16 polymerized layers,17

and a host of self-assembled biological membrane structures.
There has been extensive computational investigation of basic

morphological and thermodynamic properties of tethered mem-
branes or 2D sheet polymers starting from the seminal work of
Kardar, Kantor, and Nelson,18-20 the large scale computations
ofAbraham andGrest,21-23 and later work by other authors.24-30

Additionally, there are some analytic predictions for the behavior
of hydrodynamic transport properties,31 but these predictions
have never been tested. Recent simulations have examined the
dynamics of the crossover from subdiffusive to diffusive behavior
of sheet polymers,32-35 and some limited experimental studies

have been performed to evaluate the intrinsic viscosity [η] of
monolayer films of polymethylmethacrylate polymerized on
substrates,36,37 but surprisingly limited effort has been made to
explore seriously the properties of this novel and promising class
of polymer materials from both experimental and computational
standpoints.

Here we investigate some of the basic solution properties
required to characterize these materials, with an emphasis on
transport properties that have not previously been computation-
ally investigated.We restrict the polymer connectivity to the case
of a square sheet, where the monomers within this manifold are
connected by stiff springs that regulate the stiffness of these
polymers. Many previous computations emphasized sheets
having a local hexagonal symmetry, but 2D polymers with
both hexagonal and square local symmetries arise physically,38

and the sensitivity of the sheet properties to this internal con-
nectivity constraint is a matter of interest. A hard core repulsion
between the polymer beads, along with an attractive short-
range interaction, is also incorporated into our sheet model.
We examine the structures formed by these model sheet poly-
mers via molecular dynamics simulation for a range of molecular
mass, M.

As in the case of linear polymers, we see a range of extended
and compact structures. Depending on the stiffness of the
bonding parameters. The sheets exhibit flat, collapsed surface,
compact closed, cylindrical, or folded sheet configurations in
qualitative accord with prior work. As in the case of linear
polymers, we quantify the equilibrium geometries of these struc-
tures by the scaling of the radius of gyration, Rg, with M.

Having established the morphologies of this model for sheet
polymers, we characterize the transport properties by calculating
the hydrodynamic radius, Rh, and intrinsic viscosity, [η], basic
properties characterizing traditional polymers. We compute Rh
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and [η] using an efficient path-integral method that makes these
computations numerically feasible. We find that the numerical
scaling relationships for these transport properties are consistent
with scaling relations derived in ref 31, providing a consistent
description of solution morphology and transport for low con-
centration solutions that generalizes the known relationships for
linear polymers.

Ideally, this effort will stimulate effort to synthesize sheet
polymers at well-defined mass, boundary shape, and topology
so that these ideas can be directly experimentally tested. Experi-
mental synthesis might proceed by adsorbing polymerizable
material on surfaces,36,37 perhaps patterned by alkane thiols to
control sheet dimensions, followed by ultraviolet polymerization.
Significant work remains to performed to determine how mem-
brane shape, aspect ratio, interactions, and topology influences
ratios of these properties, as in the familiar cases of ring, star, and
comb topologies for linear polymers.39

Sheet Model and Simulation Details

Building on sheet models studied previously in the context of
linear polymer/sheet composites,40,41 we model sheet nanoparti-
cles by a square grid of beads, withL beads along each edge, for a
total of N = L2 beads. Each bead interacts via a truncated and
force-shifted Lennard-Jones (LJ) potential. We truncate the
potential at a cutoff distance rc =2.5 σ, where σ is the distance
parameter of the LJ potential (roughly corresponding to bead
diameter). This truncation includes a short-ranged attraction
between beads of the sheet. Many earlier studies examined only
repulsive excluded volume interactions; a modest attraction
between units of the surface is expected for most experimentally
realizable membranes and will play an important role in the
formation of collapsed and folded structures. Additionally, many
earlier works focused on six-coordinated hexagonal sheets. We
find below that our four-coordinated square sheets exhibit the
same qualitative morphologies and the same scaling exponents,
so we expect the specific coordination to play only a secondary
role.

Because we do not aim to study any specific system, we use
reduced units where σ = ε = m = 1. (ε is the LJ interaction
strength andm is the beadmass.) Length is defined in dimension-
less units relative to σ, time is in units of σ(m/ε)1/2, and tempera-
ture T is expressed in units of ε/kB, where kB is the Boltzmann
constant, and in reduced units, kB = 1.

Beads are bonded to their nearest neighbors by a finitely
extensible, nonlinear elastic (FENE) spring potential42
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where we choose kF = 100 and R0 = 1.5, resulting in an
equilibrium bond length 0.90.

In this work, the sheet stiffness is described by two additional
potentials

Vlinðθ1Þ ¼ Klinð1þ cos θ1Þ ð2Þ
and

V^ðθ2Þ ¼ K^
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where θ1 is the angle among the three roughly colinear consecu-
tive beads on the sheet, and θ2 is the angle among three roughly
perpendicular connected beads, as illustrated in Figure 1. We
vary Klin and K^ to explore basic configurational classes of these
2D polymers.

We investigate the morphology of tethered sheets by equilib-
rium molecular dynamics simulations for ensembles of different
initial conditions. For all cases, we use periodic boundary
conditions and choose the system size to be twice the edge length,
L, so that no force site on the sheet will interact with the periodic
image of any other force site on the sheet, thereby approaching
the dilute limit. To control temperature,T, we use theNos�e-Ho-
over thermostat. We select the “mass” of the thermostat Q =
6NT/ω2, where ω = 234.09 is the intrinsic frequency obtained
from a theoretical calculation for a face-centered cubic LJ
system,43 a natural frequency for the heat bath.All datapresented
are for simulations atT=1.0. VaryingT should not qualitatively
effect the morphologies we find but will effect the value of the
sheet stiffness at which the sheets collapse into more compact
structures.We integrate the equations ofmotion via the reversible
reference system propagator algorithm (rRESPA), a multiple
time step algorithm used to improve simulation speed.44 A basic
time step of 0.002 is employed for a three-cycle version of
rRESPA with forces divided into “fast” intramolecular bonded
forces (VFENE, Vlin, V^) and “slow” intermolecular nonbonded
components.

Sheet Morphology Types

Byvarying the linear stiffness,Klin, and perpendicular stiffness,
K^, we explore basic equilibriummorphologies of the sheets. It is
necessary to establish the possiblemorphologies for ourmodel so
that wemay later connect these with the transport properties. To
quantify the sheet morphology, we investigate how the mean-
squared radius of gyration45
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depends both on sheets stiffness andmolecularmass. The angular
brackets denote an average of many independent configurations.

Figure 1. Front and profile views of a sheet with a roughly “flat”
morphology. Specifically, this is the caseL=30 (N=900),Klin= 15.0
and K^ = 100. The sheet beads are rendered as spheres connected by
cylinders, representing FENE bonds.
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In our case, because all beads have the same mass, m = 1, the
total sheet polymermass,M, maybe replaced by the total number
of beads, N.

The scaling of Rg with N defines fractal dimension, df .
Following polymer physics convention, we define the scaling
relation46

Rg � Nν ð5Þ
where ν = 1/df.

By varying Klin and K^, we can generate a number of different
morphologies with our sheet model. Here we limit our discussion
to four main cases: (i) “collapsed” sheets that are nearly space
fillingwithKlin=0,K^=0; (ii) flat sheetswithKlin=15.0,K^=
100; (iii) “crumpled” sheets (nearly flat) withKlin= 3.0,K^=30;
and (iv) “folded” sheets withKlin=1.0,K^=30.To characterize
the sheet shape from the scaling relation in eq 5, we investigate
edge lengths L=10, 14, 17, 20, 25, 30, 40, 50, 60, 80, and 100. A
summary of the dominant behaviors for Rg and ν is illustrated in
Figure 2. We expand on these results below.

Collapsed Sheets. Setting both Klin and K^ at or close to 0
results in highly flexible sheets. In this case, the Lennard-Jones
attractions cause the sheets to crumple toanearly fully collapsed
state. These collapsed sheets form either roughly spherical or
cylindrical objects depending on the initial conditions, and
Figure 3 illustrates some representative configurations.

To determine the frequency of these states, we perform 50
runs at each L and calculate the distribution P(Rg) of Rg

values. Figure 4 shows that there is significant gap between
the roughly spherical objects and the cylinders for N= 400.
We take advantage of this gap to study separately the
morphological properties of the spherical and cylindrical
objects, which we extend to a broader range of sheet stiffness
values. Specifically, we performed ten further runs each at
parameter values (Klin=0.1andK^=5), (Klin=0.1andK^=
10), and (Klin = 0.5 and K^ = 5) over the size range 100 e
Ne 2500. Evidently, all of these systems exhibit a propensity
to form either compact spherical or cylindrical objects, which
we analyze separately below to obtain the eight different data
sets shown in Figure 5. The spherical objects have ν=0.37(
0.03, and thus df = 1/ν = 2.7 ( 0.2.47 Although these
structures are relatively collapsed, they are not truly space-
filling objects, at least at the edge lengths studied. The
cylindrical objects have ν = 0.45 ( 0.02, and a correspond-
ingly lower fractal dimension, df = 2.22 ( 0.05.

Flat and Crumpled Sheets. Using large values of Klin and
K^ leads to stiff extended sheets that are only slightly
crumpled. Figure 1 illustrates a typical configuration for
an L= 30 sheet with Klin = 15.0 and K^ = 100. Unlike the
collapsed sheets, the initial conditions do not have an effect
on the average value of Rg. In other words, P(Rg) (not
shown) is unimodal about a single flat morphology. The

Figure 2. Rg scaling of the dominant observedmorphologies.Note that
forNJ 1600 (LJ 40), the crumpled and folded sheets undergo a change
in morphology. See the text for further discussion.

Figure 3. Front and profile views of the three L = 20 collapsed
morphologies: (a) the “ball” with the smallest observed Rg values; (b)
the “stacked” configuration, so named because it resembles a neatly
folded sheet pressed flat into a stack; (c) the cylinder, which has the
largest Rg values.

Figure 4. Frequency of various collapsed morphologies. TheRg values
forL=20sheetswithKlin=0andK^=0aredivided into two separate
regions. The small Rg sheets are roughly spherical, and the large Rg

sheets are cylindrical. The distribution is more complex where the small
Rg distribution is bimodal. Further investigation shows the presence of
both “ball” and “stacked” sheet types.

Figure 5. Scaling of Rg for the various collapsed sheet systems inves-
tigated. Each set of runs produced distributions that were bimodal at
smallN but become unimodal at largeN. This corresponds to aN value
at which Rg of the initially cylindrical objects collapses.
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lack of dependence on initial conditions is explained by the
fact that the larger stiffness parameters in the flat sheets
oppose any deviations from a flat morphology, preventing
any folds from occurring.

Figure 6 shows the scaling behavior of Rg for a variety of
parameter values, all of which yield flat sheets; that is, ν =
0.500( 0.005 or df = 2.00( 0.02. ForN>3600, the scaling
relation breaks down for sheets with smallerKlin. Decreasing
K^ has a similar effect. This breakdown is the result of a sheet
collapsing and is a general feature of our model for suffi-
ciently large N. Because the stiffness parameters are defined
locally, Klin andK^ effectively define a persistence length for
the sheets. If L is large enough, an arc may form, and if the
endpoints of the arc arewithin the range of attraction of each
other, the edges can “stick” to each other, giving rise to a fold
in the sheet. Therefore, any sheet will collapse for large
enough L. Moreover, as Klin increases, the N value at which
the scaling relation in eq 5 breaks down becomes larger.

Transitional Morphologies: Tubules and Folded Sheets. A
large number of parameter choices yield primarily cylindrical
objects. Figure 7 shows single and double spiraled tubules, the
dominant transitional morphologies between the collapsed
and flat morphologies. These structures are often referred to
as tubules in the literature.48-50 Figure 8 shows the scaling of

Rg for several choices of Klin and K^. Individual samples
exhibit either one or two spirals. As in the case of cylinders
formed for parameter values that yield collapsed structures,
these cylinders have ν=0.45( 0.02. Such transitional objects
have previously been found to have similar ν values in the
range between 0.4 and 0.4225,26 for simulations of hexagonal
sheet polymers at a compensation point (or theta point)
between repulsive and attractive interactions (which favor flat
or collapsed states, respectively). Similar to the flat sheets, for
large enough N, we find that the transitional states are no
longer stable, and the sheets collapse. However, we lack
sufficient data to evaluate the large-N scaling behavior for
these structures, which we expect will be similar to that of the
previously described collapsed structures. An additional mor-
phology emerges in this parameter range: wedge-shaped
structures similar to what the literature refers to as a “folded”
sheet.51 Figure 9 shows that this folded morphology is domi-
nant at (Klin = 1.0 and K^ = 30) and (Klin = 3.0 and K^ =
10). Whereas this morphology appears to be visually distinct,
the scaling behavior is the same as that for the cylinders.

Figure 6. Scaling of Rg for the various flat sheet systems investigated.
The scaling relation for perfectly flat sheets is plotted for comparison.
For all flat sheets, Rg ≈ N0.5 associated with flat objects. Because our
simulations produce nearly identical values ofRg, we progressively shift
each data set by a factor 1.2 for the clarity of the Figure.

Figure 7. Front and profile views of (a) a single spiral cylinder and (b) a
double spiral cylinder. For both cases, L=30 cylindrical sheet, Klin =
0.1, and K^ = 90.

Figure 8. Scaling of Rg for cylindrical morphologies for values of Klin

and K^ between those of the collapsed and flat morphologies. There is
one exception: the Klin = 1.0, K^ = 30 system produces a visually
“folded” morphology, but the scaling behavior is indistinguishable.

Figure 9. Front and profile views of a “folded” sheet with L = 30,
Klin = 1.0, and K^ = 30.
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Morphological Phase Diagram.We perform an exhaustive
set of simulations to summarize how Klin and K^ affect the
morphology and use that information to create a “sheet
phase diagram” (Figure 10) for one edge length (for L=20,
N = 400). The sheet morphologies can be classified into
three main regions: (i) a collapsed region at small stiffness
where both spherical and cylindrical morphologies coexist,
(ii) a flat region at high stiffness, and (iii) a transitional region
where cylinders are the dominant morphology but wedge-
shaped of other folded morphologies are also present.

Whereas there is a stable transition region between flat and
collapsed states for L = 20, we know from our previous
examination of the exponent scaling (for a more limited set of
stiffness parameters) that the larger sheets tend to collapse.
This raises the question of whether the crossover from flat to
collapsed sheets is always a continuous one, or if it might
become discontinuous under some circumstances. Previous
works25,26 suggest that the transition is likely to be discontin-
uous when the sheets are highly flexible but that it is contin-
uous for stiffer sheets, where coherent folds can form more
easily. Indeed, Figure 10 shows that the region of folded
structures shrinks as we decrease the sheet stiffness. However,
a complete analysis of the phase space also requires a con-
sideration of theN dependence of thesemorphologies. On the
basis of the more limited simulations we have for largerN, we
do not see qualitative changes in structure of the morphology
diagram, and the crossovers between different regions vary in
a similar way as the case of linear polymers upon varying
polymer mass. Specifically, the regions of collapsed and
cylindrical configurations expand as edge length grows, which
we expect because the larger sheets can more easily fold on
themselves. However, the transition cylinder/folded region
appears to somewhat shrink with increasing mass. This may
be indicative of a potential discontinuity from collapsed to flat
sheets for very large N but is by no means conclusive. The
complete N dependence is a valuable question to examine in
future work but promises to be computationally challenging.

Transport Properties

Having established the basic morphologies and their approxi-
mate mass scaling for our model, we next evaluate basic hydro-
dynamic properties of these sheet polymers important for their
solution characterization, and connect it back to sheet morphol-
ogy. The highly extended nature of linear polymer chains in the
swollen state makes polymer chains effective at modifying the

viscosity of the solute to which they are added. The diffusion of
such large objects in solution is slow in comparison with the
monomers comprising the polymer. These changes in diffusivity
are also evident for 2D polymers, although the effect of swelling
can be expected to be larger for linear polymers because their
conformations are more susceptible to thermal fluctuations.

Intrinsic Viscosity. The intrinsic viscosity [η] defines the
differential change of viscosity, η, when a polymer is added
to solution in the dilute limit. The influence of polymer
branching and stiffness on [η] for linear polymers has been
extensively investigated both theoretically and experimen-
tally.39 In this section, we consider an extension of this work
to 2D polymers. Formally, the ratio of viscosity of a polymer
solution, η, to the pure solvent, ηs, can be expanded in terms
of a power series in the polymer concentration, φ

η=ηs ¼ 1þ ½η�φþO ðφ2Þ ð6Þ
We utilize a numerical path integral package (ZENO) that

allows for simultaneous computation of [η] based on geo-
metric information about the particle shape.52 ZENO calcu-
lates the transport properties of complex-shaped particles by
exploiting an analogy between hydrodynamics and electro-
statics.53 Mathematically, this computational method is
based on the observation that an angular preaveraging of
the Green’s function for the steady-state Naiver-Stokes
equation (the Oseen tensor) is exactly the Green’s function
for the Laplace equation. There are many interrelations
between electrostatic and hydrodynamic properties that
derive from this analogy. Themost notable is that for objects
of fixed shaped having “stick” hydrodynamic boundary
conditions, [η] is proportional to the intrinsic conductivity,
[σ], and hydrodynamic radius, Rh, is proportional to capa-
city, C, for highly conducting objects having the same shape
to a high degree of approximation.52,53 The interrelations
between these fundamental hydrodynamic and electrostatic
“shape functionals” ultimately derive from a similar math-
ematical formulation of their boundary value problems.
Because C and the electric polarizeability tensor can be
calculated formally by averaging over random walk
trajectories,52-55 we can compute [σ] and C of our sheet
polymers directly from one calculation and then estimate [η]
and Rh (see next section) to a good approximation.

The calculation of [σ], a byproduct of our calculation of
[η], has independent interest in the description of conductiv-
ity changes arising when conducting sheet particles (e.g.,
graphene) are added to a relatively insulating material (e.g.,
most polymeric materials). Additionally, because C is pro-
portional to the Smoluchowski rate constant for diffusion-
limited reactions,56C is predictive of the rate of heat transfer
and reaction rates for diffusion-limited reactions. The mass
scaling of [σ] and C should follow that of [η] and Rh,
respectively. Apart from theoretical interest, these property
interrelations offer additional methods for characterizing
sheet polymers and insight into the optimal design of ma-
terial using sheet polymer additives such as graphene.

Figure 11 shows [η] as a function of the sheet size, N. The
scaling behavior of [η] can be understood on the basis of a
generalization of Kirkwood-Riseman theory39 to sheetlike
morphologies. Specifically, [η] should scale as31

½η� � Nðd - 2Þν- 1R2
g ð7Þ

where d is the spatial dimension. Combining with eq 5, we
obtain the expected asymptotic scaling

½η� � N3ν- 1 ð8Þ
for d = 3, just as in the case of flexible polymers.

Figure 10. Approximate “sheet morphology phase diagram” is shown
for N = 400 (L = 20) as a function of Klin and K^.
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Because we know ν from the previous section, we can test
the validity of this scaling relation. The flat and crumpled
sheets have ν = 0.500 ( 0.005, and so we expect [η] ≈
N0.500(0.015, matching the theoretical predictions. When the
crinkled sheets collapse (NJ 3600), [η] approaches the value
for the crumpled sheets. The collapsed sheets have ν=0.37(
0.03, and so we expect [η] ≈ N0.11(0.09, that is, nearly
independent of N; our results for [η] for collapsed sheets
are consistent with a nearly N-independent behavior. More-
over, because the collapsed sheets are roughly spherical, it
follows naturally that [η] should be close to that theoretically
known value for the sphere, [η] = 5/2, independent ofN.57,58

The transitional cylindrical and folded sheets have ν =
0.45 ( 0.02, and so we expect the scaling [η] ≈ N0.35(0.03;
our results are consistent with this scaling theory prediction
prediction forNe 1600. At largerN, the sheets collapse, and
the value of [η] is again similar to that of the collapsed state.

Hydrodynamic Radius. The translational diffusion coeffi-
cient,D, of a 2D polymer or any Brownian object embedded
in three dimensions is defined by the general Stokes-
Einstein relationship

D ¼ kBT

6πηRh
ð9Þ

where kBT denotes thermal energy and Rh is the particle
hydrodynamic radius. Rh also provides a measure of the
effective particle “size” in solution. As in the case of [η], the
computation of Rh is a difficult problem for objects that
are not spherical (or ellipsoidal), and there is indeed no
accurate analyticmethod for computingRh for flexible linear
polymers even without excluded volume interactions. For-
tunately, the ZENO package also allows for a numerical
evaluation ofRh, regardless of the molecular complexity and
topological form of the polymer.

We show the scaling behavior for Rh for the various sheet
morphologies in Figure 12. Interestingly, the scaling of Rh

roughly follows the scaling of Rg in Figure 2; the exponent
value νh for the Rh scaling is consistently larger by 0.01, and
the ratioRh/Rg for the range ofN studied is 0.9jRh/Rgj 1.
The scaling of Rh is more complicated for linear polymers,
where a greater hydrodynamic permeability makes the ap-
parent mass scaling exponent, νh, depend on M and mono-
mer structure.59 In particular, νh for good polymer solutions,

where the flexible polymers chains are swollen by excluded
volume interactions, is often found to be substantially
smaller than ν obtained from measurements of Rg and other
static property estimates of the chain dimensions. The ratio
Rh/Rg is in the range reported for long polymer chains.
Specifically, recent path integration computations indicate
thatRh/Rg≈ 0.7 for self-avoiding linear chains, andRh/Rg≈
0.85 for ring self-avoiding polymers in the limit of infinite
chain mass.59 For spheres, this ratio is (5/3)1/2 ≈ 1.3, so the
sheets are intermediate between spheres and themore diffuse
random coil polymers. Dendrimer molecules for modest
generation numbers (three to five) and other branched
macromolecules are predicted to have Rh/Rg ratios similar
to those of our sheets.60

Conclusions

For a square-sheet polymer model, we have mapped out how
the stiffness influences equilibrium morphology, as defined
through the radius of gyration. More significantly, we provide
basic solution transport properties and connect the scaling of [η]
to the sheet morphology. Our results confirm that we can
reproduce the range of known morphologies: collapsed, flat,
crumpled, cylindrical, and folded. These basic morphologies
have been observed before2,48-50,61 in simulations of 2D poly-
mers having a hexagonal lattice connectivity, so these morphol-
ogies are apparently general. For a given edge length,L, varying
the stiffness parametersKlin andK^ controls whichmorphology
is dominant. At small Klin and K^, the sheets collapse, forming
either spherical and cylindrical objects. As the stiffnessK^ increa-
ses, cylindrical objects become the dominant morphology
(Figure 10). The behavior in this region is more complex, though,
because folded objects are also present. For the flatmorphologies,
we have ν = 0.5, the expected value for a flat plate. For flat
sheets near the boundary between the flat and cylinder or
foldedmorphologies, the sheets visually display some “crinkling”,
but ν does not deviate from the flat value. Because the bending
parameters define an effective length scale for the sheet stiffness,
the attractive interactions between beads will cause all sheets
to collapse at large enough N. Had we used purely excluded
volume interactions, this collapse would probably not occur
on increasing sheet size. However, a modest self-attraction
of the surface is plausible for most experimentally realizable
membranes and facilitates the formation of complex folded
structures.

Figure 11. Intrinsic viscosity, [η], as a function of sheet size. The dotted
lines indicate theoretically predicted scaling behaviors. Note that the
collapsed sheets have nearly constant [η]; for comparison, [η] = 5/2 is
the theoretical Einstein value for a hard sphere.

Figure 12. Hydrodynamic radius, Rh, as a function of sheet size. The
scaling with N directly tracks the variation of parallels that of Rg in
Figure 2.
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The most novel aspect of the present work is the computation
of the transport properties of membrane polymers. The intrinsic
viscosity, [η], shows a clear qualitative trend in stiffness: the stiffer
and the more extended the sheet, the larger [η] and Rh become.
Moreover, the scalingof these transport properties directly follow
theoretically expected scaling relations based on the Kirk-
wood-Riseman theory so that the slow crossover scaling that
makes the static and dynamic scaling exponents different does
not exist for sheet polymers.59 Presumably, strong intra-sheet
hydrodynamic interactions are responsible for this important
effect.

Because we have focused on symmetric square sheets, it is
natural to ponder to what degree anisotropy of the sheets might
affect our results. For real membranes with modest anisotropy,
we expect the scaling exponent values we find to be universal.
This is supported by experiments on exfoliated graphite11,12

where there is anisotropy. However, the prefactors and the
exponent associated with the number of flexible sheet polymer
configurations should be dependent on boundary shape, similar
to the effect of varying topology (ring, star, comb) in linear
polymers. For the case of sheets with extreme anisotropy, we can
gain some insight by considering limiting situations.For example,
when the sheet is only a single bead or few beads wide and
repulsive self-interactions are predominant, the sheets must
reduce to self-avoiding walks, which have an exponent ν near
the Flory estimate of 3/5 in three dimensions. Therefore, a large
anisotropy in the sheet coordinates progressively favors a stron-
ger repulsive polymer self-interaction and ν values larger than the
flat sheet value of 1/2. Additionally, sheet punctures, or techni-
cally “genus”, may affect the exponent behavior.

Whereaswehave focusedon the dilute limit in this initial study,
intersheet interactions can be significant and sometimes dominate
the properties of real systems. We have carried out some
preliminary calculations for multisheet systems and find that
significant clustering of the sheets occurs, and this clustering can
actually change the sheet morphology from that observed in the
dilute limit. When clustering results in stacked layers, we antici-
pate a significant decrease in η and [η]. The formation of more
open clusters (fractal, flat sheet, or rodlike) should have the effect
of increasing η and [η] because of the increase in the effective
particle size. Therefore, changes in transport properties with
aggregation should depend on the types of clusters formed. An
investigation of the nature of entanglement in sheetlike systems
would also be of interest, and simulations of sheets at high
concentrations could provide some essential insight into this
phenomenon.

Finally, we point out that tethered sheets generalizing linear
chain block copolymers offer the possibility of diverse structures
with singular properties and states of organization. For example,
different types of copolymer materials could be obtained by
controlling the outer shape of the sheet, the sheet topology, and
by varying the chemical nature and shape of regions internal to
the sheet manifold to create structures that self-associate into
functional 3D folded structures whose form could be actuated
thermodynamically. It should also be possible to make hybrid
structures between the sheet and linear polymer chains by
grafting a brush onto one side of the tethered sheet to create a
“carpet” structure.

Given the enhanced barrier properties and encapsulation
properties of sheet structures, these new types of polymers could
have diverse applications and their study promises to be rich both
experimentally and theoretically. Making this type of polymer
should be facilitated by advances in self-assembled monolayer
printing technology that should allow the facile formation of
imprinted patterns onto which different monomer types can be
adsorbed and subsequently polymerized.17 Creating large quan-
tities ofmonodisperse polymers of this typewould be a challenge,

but the potential applications of this new class of polymers and its
potential scientific value should make this effort worthwhile.
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