PHYSICAL REVIEW LETTERS 127, 277802 (2021)

Explaining the Sensitivity of Polymer Segmental Relaxation to
Additive Size Based on the Localization Model

Thomas Q. M(:Kenzie—Smith,1 Jack F. Douglas,2 and Francis W. Starr®'
lDepartment of Physics, Wesleyan University, Middletown, Connecticut 06459-0155, USA
*Materials Science and Engineering Division, National Institute of Standards and Technology,
Gaithersburg, Maryland 20899, USA

® (Received 24 July 2021; revised 20 October 2021; accepted 14 December 2021; published 30 December 2021)

We use molecular simulations to examine how the dynamics of a coarse-grained polymer melt are altered

by additives of variable size and interaction strength with the polymer matrix. The effect of diluent size ¢ on

polymer dynamics changes significantly when its size is comparable to the polymer segment size. For each

o, we show that the localization model (LM) quantitatively describes the dependence of the segmental

relaxation time = on temperature 7 in terms of dynamic free volume, quantified by the Debye-Waller factor
(u?). Within this model, we show that the additive size alone controls the functional form of the T
dependence. The LM parameters reach asymptotic values when the diluent size exceeds the monomer size,

converging to a limit applicable to macroscopic interfaces.
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Adding particles of various sizes and interaction strengths
has long been utilized to alter the dynamical and mechanical
properties of polymer materials. This tunability is used in a
myriad of applications, from building flexible integrated
circuits to preserving biomaterials [1-7]. These additives
can vary greatly in size, ranging from the molecular scale
(<1 nm) to the scale of nanoparticles (=2 nm). The case of
nanoparticle (NP) additives has been extensively studied,
and it is known that attractive interactions between the
polymer and NP diminish the polymer mobility in an
interfacial zone, which results in an overall slowing of
composite dynamics [8,9]. Similar changes to polymer
dynamics occur in polymer thin films, and these films
can be roughly considered as the limit of NP with infinite
radius [8,10]. This slowing of segmental dynamics carries
over to smaller, attractive, molecular-scale additives [11].
On the other hand, small additives with a weaker attraction to
the polymer matrix can enhance polymer mobility and
reduce viscosity, commonly referred to as plasticization
[12-15]. For these molecular-scale additives (“diluents”),
the polymer mobility has been shown to depend on additive
size. For additives smaller than the size of polymer seg-
ments, Varnik and co-workers recently used molecular
simulations to show that dynamics can vary nonmonotoni-
cally with additive size [13,16]. Experimentally, there is
evidence that additives with a size comparable to that of
polymer segments can give rise to large changes in dynamics
[11] and gas permeability [17-19]. Motivated by these
considerations, we investigate the changes in the polymer
dynamics for additive sizes ranging from molecular-scale
(smaller than polymer segments) to NP-scale (larger than
segments) and show that changes can be directly explained
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in terms of a dynamic free volume through the localization
model (LM) [12,20,21].

To understand the effects of additive size, we examine
changes in composite dynamics using additive sizes from
about half a monomer diameter (¢ = 0.6) to twice the
monomer diameter (o = 2.0). At small sizes, interfacial
effects are negligible, yet we still find substantial, size-
dependent changes to dynamics compared to a pure (no
additive) system. This large effect of small additives on
dynamics is consistent with other simulation studies [12—16]
and experiments [11]. Experimentally measured changes of
gas permeability due to additives have been shown to parallel
changes in the positron volume [17-19], which in turn
correlate with the amplitude of molecular vibrations quanti-
fied by the Debye-Waller factor (u?) [22]. Thus, to better
understand the additive size-dependent alteration of the
polymer dynamics, we turn to the LM, which posits a link
between the segmental, a-timescale relaxation z and Debye-
Waller factor (u?) [12,20,21]. Although 7z and (u?) show
qualitatively different ¢ dependence at low and high 7', we
find that the LM is remarkably successful at relating the T
dependence of 7 to (u?) for any given additive size o.
Furthermore, for ¢ larger than the monomer diameter, we find
the parameters of the LM are independent of additive size,
suggesting that the transition from molecular to NP-scale
additives is associated with a transition from a o-dependent to
a o-independent LM description, and that this transition
occurs for a surprisingly small additive size.

Our findings are based on molecular simulations of a bulk
polymer system of 600 chains of length 10 (below the enta-
nglement length) with spherical additives, carried out using
the LAMMPS molecular dynamics simulation package [23].
Additives and polymer beads interact via the Lennard-Jones

© 2021 American Physical Society


https://orcid.org/0000-0002-2895-6595
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.127.277802&domain=pdf&date_stamp=2021-12-30
https://doi.org/10.1103/PhysRevLett.127.277802
https://doi.org/10.1103/PhysRevLett.127.277802
https://doi.org/10.1103/PhysRevLett.127.277802
https://doi.org/10.1103/PhysRevLett.127.277802

PHYSICAL REVIEW LETTERS 127, 277802 (2021)

(LJ) potential. Interactions among monomers of the chains
define reference values for the LJ potential, ¢, = 6,,,, = 1
(mm is monomer-monomer, ma is monomer-additive, and
aa is additive-additive); for additive-additive interactions,
6, ranges from 0.6 to 2 o,,,; for monomer-additive
interactions, ¢,,, is the average of ¢,, and 6,,,, following
the standard Lorentz rule. We truncate and shift the LJ
potential at 2.5 times the corresponding LJ diameter of the
pair. The primary results examine additives with a fixed
interaction strength for all 6,, to separate the effect of
additive size from the better known effects of attraction
strength; specifically, we choose ¢,, = 1.0 and ¢,,,, = 1.5 to
ensure that additives do not phase separate from the polymer
matrix. Motivated by the experimentally known dependence
of the LJ parameters of hydrocarbons [24-27], we perform a
more limited set of simulations in which the attraction
strength varies linearly with the additive size; specifically,
we define ¢,, = €y(26,, — 6¢), with the polymer-additive
interaction strength ¢,,, following the Berthelot geometric
mean mixing rule. We choose ¢, = 2.25 and 6, = 1.0 so
that additive size ¢,, = 1 has the same ¢,,, as our primary
results with fixed ¢,,,,. These additional simulations allow us
to mimic experimentally available additives, while also
testing the sensitivity of our findings to the interaction
strength. Regardless of size, all particles have mass 1.0. To
simplify notation, all units are henceforth reported relative to
the polymer values o,,, = €,,, = 1, and we relabel the
additive diameter o, to o, since it is the only size that varies.
Bonded polymer beads also interact via a harmonic potential
V = L kepain(r — r9)?, where kg = 1111€,,, and ry =
0.96,,, [28,29]. The largest additive size bridges the gap
between small, molecular diluents and the variable size
nanoparticles studied in our previous Letter [30].

To isolate the effects of additive diameter o, we keep
the volume occupied by additive particles relative to that
of all particles fixed. Specifically, we restrict ourselves
to a representative additive volume fraction v = N0/
(N,, + N,06*) = 0.1, typical for many applications. Thus,
we use more additives for small ¢ to maintain constant v.
At v = 10%, the number of additives ranges from 83 for
the largest ¢ = 2.0 to 3086 additives for the smallest
o = 0.6. For each o, we simulate the system from tempe-
rature 7 = 0.40 to 1.2 along an isobaric path with pressure
P = 0. The lowest temperature 7" simulated is limited by
time needed to equilibrate systems using typical GPU
computing resources currently available.

We characterize polymer and additive a-relaxation
dynamics by examining the self part of the intermediate
scattering function

1 /N
Fself(q7 t) = N < E e—lq~[rj(t)—r/-(0)]>’ (1)
J=1

where q is the scattering vector. Following common
practice, we evaluate F(q,t) at ¢ = qq, the primary
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FIG. 1. The relaxation of Fy(qg,?) for (a) monomers and
(b) additives for representative o values, including a comparison
to the pure system. All data are taken at 7 = 0.45. These data are
for fixed e€,,,; similar data for variable ¢,,, are provided in the
Supplemental Material [31].

peak of the monomer structure factor (see Supplemental
Material [31]). Figure 1 shows the o dependence of
For(qo. 1) at the relatively low temperature 7 = 0.45
for both the polymer and additives for the case of additives
with a fixed interaction strength (see Supplemental
Material [31] for the case of variable interaction strength).
At vibrational timescales (¢ < 1), Fig. 1(a) shows that the
relaxation rate of monomers increases with increasing o.
In contrast, the additives [Fig. 1(b)] show the opposite
dependence. Approaching the a-relaxation timescale,
Fr(qo,t) for different o cross each other, both for
polymer segmental relaxation and additive relaxation.
As a consequence, there is a complex ¢ dependence of
a relaxation.

We can capture the complex dependence of the relaxation
more clearly via the a-relaxation time z. Following a
common convention, we define Fy(gq,7) = 0.2, noting
that our qualitative findings are insensitive to the definition
of 7; 7,, and 7, define the relaxation time for monomers and
additives, respectively. For both the case of fixed and variable
interaction strength €,,,, Figs. 2(a) and 2(b) show that z,, and
7, both increase significantly with increasing ¢ up to ¢ = 1.0,
the monomer scale. For fixed ¢,,,, T reaches a maximum
and decreases for ¢ > 1.0; for variable ¢,,,, v reaches an
approximate plateau for ¢ > 1.0. Note that, in the case of
variable ¢,,, there is an implied minimum in 7 for ¢ < 0.6,
since 7 at ¢ = 0.6 is smaller than the pure melt, and we
expect to smoothly recover the behavior of the pure melt in
the limit of vanishing additive size. Curiously, in all cases, the
polymer segments and additives have the same relaxation
time at o ~ 0.85, a point to which we shall return. It is not
readily apparent why both 7, and 7, should increase
dramatically only until a size comparable to the monomer
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FIG. 2. (a),(b) Segmental relaxation time 7 for polymer (black
circles) and additives (red triangles) as a function of additive size
at T = 0.45 for (a) fixed monomer-additive interaction strength
€,. and (b) variable ¢,,. The horizontal dashed line is the
reference value for the pure polymer system. (c),(d) Debye-
Waller factor (42) as a function of additive size at T = 0.45 for
(c) fixed €,,, and (d) variable €,,,.

diameter. However, this qualitative change in 7 does seem
quite general. In fact, Varnik and co-workers [13,16] pre-
viously observed a local maximum in the segmental relax-
ation time at nearly the same additive size in simulations
using a similar model. Combined with our results, this
suggests that the qualitative change in segmental relaxation
time at 6 =~ 1 (the segment size) does not depend significantly
on additive interactions. Because of this, we conclude that
this characteristic size scale arises from considerations related
to packing (controlled by additive size) rather than the
specific interactions. This is also consistent with the experi-
ments of Cheng et al. [11], who observed a large slowing of
nanocomposite segmental dynamics using attractive additives
with a diameter similar to the segmental size and reported a
diminished effect for larger nanoparticles.

Naively, one might expect this packing effect on relax-
ation to be controlled by changes in the overall packing
fraction. However, choosing a fixed v = 10%, the packing
fraction does not reflect the o-dependent changes of 7 (see
Supplemental Material [31]). Thus, simplistic free volume
ideas based on average density are insufficient to account for
these dynamical changes. To explain the variations in local
packing that lead to the observed trends in the relaxation
times, we use a local dynamic measure of accessible volume,
which is linked to the o relaxation through the localization
model. This accessible volume is quantified by (u?)%/2,
where (u?) is the Debye-Waller factor, characterizing
amplitude of the particle motion on the timescale of caging
by neighboring particles. Specifically, we define (u?) as the
value of the mean-squared displacement at time ¢ = 2 for all
T and o (see Supplemental Material [31]). Figures 2(c) and
2(d) show the dependence of (u?) on ¢ at T = 0.45 for both
fixed and variable ¢,,,. The ¢ dependence of (u*) does not

mimic the a-relaxation time. Curiously, the values of (#?) for
monomers and additives intersect at ¢ ~ 0.85 for all cases,
which corresponds to the ¢ value of the crossing of polymer
and additive 7, thus suggesting a deeper connection.

To link the complex behaviors of = and (1?), we turn to
the localization model. In the LM, the a-relaxation time 7 is
directly related to (u?) [20,21,32], indicating a connection
between fast inertial dynamics occurring on a picosecond
timescale and the long-timescale structural relaxation time.
Specifically, the original formulation of the LM predicted
7 = tgexp (ud/(u?))*?, where 7, u3, and @ are model-
dependent parameters; here we fix @ = 3, appropriate for an
isotropic dynamic free volume. The LM has been validated
in several systems with no free parameters by defining 7 and
u} from the values of 7 and (u?) at a reference temperature
[12,33,34]. Typically, this reference temperature is the onset
temperature 7', for non-Arrhenius temperature dependence
on cooling [35]. However, this crossover temperature is not
sharply defined and an unambiguous determination of 74 is
challenging. Moreover, there is no compelling reason why
the onset of localization should arise at exactly the same
temperature at which non-Arrhenius dynamics emerges.
Accordingly, we consider an alternate characteristic temper-
ature T, to define LM parameters, determined as a free
empirical parameter for each o. This approach for determin-
ing the characteristic temperature of the LM has also been
used to examine the relaxation of the SPC/E model of water
[36]. Defining u% and 7, in terms of the reference values at
T,, the LM becomes

o(T) =15e" exp K%) 3/2], (2)

where 7, = 7(T,) and u? = (u*(T,)). The fact that (u?)
and 7 have different ¢ dependencies at low 7" implies that
the characteristic parameters of the LM for all particle
species must vary with o. Figure 3 shows that LM
prediction collapses to a linear master plot as a function
of (u%/(u*))3/* for polymer segments, additives, and all
particles, for both fixed and variable monomer-additive
interaction strength, demonstrating the success of the LM
for each value of o.

The variation of the LM parameters provides insight into
what controls the changes in dynamics due to the additives.
Figures 4(a) and 4(b) show the variation of ué and 7, with o.
The most striking observation is that the ¢ dependence of the
model parameters is nearly identical for the cases of fixed
and variable ¢,,,, which requires that the 7 dependence of 7
at a given o is identical (relative to an e¢,,,-dependent
reference temperature). In other words, the functional form
of the T dependence is determined solely by the additive
size. Since we know from Fig. 2 that the ¢ dependence of 7 is
different for fixed versus variable ¢,,,, the information about
the monomer-additive interactions must be encoded solely in
the variation of the reference temperature 7,. Indeed,
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FIG. 3. Data collapse for the relaxation time z using the
localization model [Eq. (2)] for polymer segments (circles and
diamonds), additives (triangles and stars), combined system
(squares and x-es), and pure system (crosses) for both fixed
and varying €,,,. Data for each ¢ are different colors, and the
dashed line indicates the predicted data collapse. The inset shows
the monomer alpha relaxation time 7,, as a function of (u?) for
various ¢ > 1.0 and T using both fixed and variable ¢,,,. The
collapse of these data without scaling indicates the LM para-
meters are independent of ¢ for ¢ > 1.0.

Fig. 4(c) shows the variation of 7', is quite different for the
cases of fixed and variable ¢,,,. Thus, additive size controls
the functional form of the T dependence, while additive
interactions control the onset temperature of localization.
The variation of u% and 7, with additive size provides
further insight into the variation of dynamics with . As
noted for the ¢ dependence of 7 and (u?) (Fig. 2), the 7, and
uz values for polymer and additives cross at ¢~ 0.85.
Furthermore, 7, and u? at ¢ ~ 0.85 match the corresponding
values of the pure polymer system, emphasizing a character-
istic size scale close to that of the polymer segments. At
o ~ 0.85, the additive systems have identical 7" dependence
to the pure polymer system, but with an overall shift
in the temperature scale because of the differences in 7.
Figures 4(a) and 4(b) also show that 7, and u% for the
polymer reach approximately constant values for ¢ > 1.0. A
constant value for the LM parameters requires that 7 is a
universal function of (u?) for ¢ > 1.0 without any renorma-
lization. The inset of Fig. 3 confirms data collapse without
renormalization in this ¢ range. This is in-line with argu-
ments in earlier literature [8,10,37] that the changes in
dynamics due to NPs can be directly related to dynamical
changes in thin films. In other words, the approach of 7, and
uz to an asymptotic value suggests that we reach this
macroscopic interface limit when the additive size roughly
exceeds that of the polymer segments. We also analyzed data
from earlier polymer-NP composite simulations with vari-
able NP size from Ref. [30] and confirmed that the LM
parameters also asymptote to fixed values for larger NP size
(see Supplemental Material [31]), supporting this assertion.
Previous work on polymer thin films [38,39] found that the
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FIG. 4. The localization model parameters (a) u?, (b) 7., and
(c) T, as a function of ¢ for polymer (circles), additive (triangles),
and the pure polymer reference case (horizontal line). The open
symbols are for fixed ¢,,,, and filled symbols are for increasing
€,,q With size; u§ and 7,, which determine the 7" dependence of z,
are nearly independent of ¢,,,. Note that 7, and u2 for polymers
are approximately constant for ¢ > 1. Other than the reference
pure polymer, lines are only a guide for the eye.

mobility changes of films are dominated by changes of the
high-T activation free energy. In the Supplemental Material
[31], we show that, similar to films, there is a significant
alteration of the high-T activation barrier with additive size,
which partially accounts for the o-dependent changes in the
T dependence of 7.

We have shown that the addition of additives to a polymer
melt with sizes ranging from small molecules to nano-
particles can result in complex changes to the a-timescale
dynamics. For additive sizes smaller than the polymer
segments, the effects of additives diminish rapidly. From
a quantitative view, we have shown that the localization
model describes the complex size dependence of 7, even
though the size dependence of (u?) is comparatively simple
and monotonic. The LM parameters 7, and u2 appear to
depend only on additive size and are insensitive to the
strength of polymer interactions with the additives, indicat-
ing an entropic origin to the changes in 7 dependence;
interaction strength only affects the temperature 7, at which
localization becomes significant. For additive sizes larger
than the polymer segment size, the LM parameters saturate,
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demonstrating that a fixed relationship emerges at a surpris-
ingly small additive size and extends to much larger NP
additives. This accounts for the observation that the changes
in polymer dynamics due to NP can be mapped for different
NP sizes, ranging up to the limit of thin films. A natural
extension of these findings includes considering more
complex additive shapes, which may affect some of the
findings presented here; some work has already been done in
this direction [12,40]. More generally, these findings are
useful for applications in which diluents are commonly used
to alter the plasticity of materials.

We acknowledge funding support from NIST Award
No. 70NANBI15H2.
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