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We carefully examine common measures of dynamical heterogeneity for a model polymer melt and
test how these scales compare with those hypothesized by the Adam and Gibbs (AG) and random
first-order transition (RFOT) theories of relaxation in glass-forming liquids. To this end, we first an-
alyze clusters of highly mobile particles, the string-like collective motion of these mobile particles,
and clusters of relative low mobility. We show that the time scale of the high-mobility clusters and
strings is associated with a diffusive time scale, while the low-mobility particles’ time scale relates to
a structural relaxation time. The difference of the characteristic times for the high- and low-mobility
particles naturally explains the well-known decoupling of diffusion and structural relaxation time
scales. Despite the inherent difference of dynamics between high- and low-mobility particles, we
find a high degree of similarity in the geometrical structure of these particle clusters. In particular,
we show that the fractal dimensions of these clusters are consistent with those of swollen branched
polymers or branched polymers with screened excluded-volume interactions, corresponding to lattice
animals and percolation clusters, respectively. In contrast, the fractal dimension of the strings crosses
over from that of self-avoiding walks for small strings, to simple random walks for longer, more
strongly interacting, strings, corresponding to flexible polymers with screened excluded-volume in-
teractions. We examine the appropriateness of identifying the size scales of either mobile particle
clusters or strings with the size of cooperatively rearranging regions (CRR) in the AG and RFOT
theories. We find that the string size appears to be the most consistent measure of CRR for both the
AG and RFOT models. Identifying strings or clusters with the “mosaic” length of the RFOT model
relaxes the conventional assumption that the “entropic droplets” are compact. We also confirm the
validity of the entropy formulation of the AG theory, constraining the exponent values of the RFOT
theory. This constraint, together with the analysis of size scales, enables us to estimate the characteris-
tic exponents of RFOT. © 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4790138]

I. INTRODUCTION

One of the central mysteries of glass formation is the ori-
gin of the dramatic increase of relaxation times approaching
the glass transition temperature, Tg, which is commonly in-
terpreted as an increase of the effective activation energy.1, 2

Since the low temperature (T) activation energy typically ex-
ceeds the energy of a chemical bond, it is natural to asso-
ciate this activation process with the reorganization of mul-
tiple atoms or molecules. Indeed, there is general agreement
that glass-forming liquids are dynamically heterogeneous, ex-
hibiting a significant fraction of particles with extreme high
or low mobility relative to the mean, whose positions are spa-
tially correlated.3–5

Even before the phenomenology of dynamical hetero-
geneity was clearly established, Adam and Gibbs6 (AG) sug-
gested a molecular picture of this kind in 1965, along with
specific predictions for the relation of the configurational en-
tropy Sconf to the relaxation dynamics. In particular, they pro-
posed that reorganization in a liquid occurs via hypothetical

“cooperatively rearranging regions” (CRR), where the activa-
tion energy for relaxation is extensive in the number of atoms
or molecules that make up the CRR. The AG model attributes
the rapid growth of relaxation time approaching Tg to the pro-
gressive growth of the CRR size on cooling. However, the AG
theory does not include a microscopic description of the CRR,
or a concrete prescription for identifying them. AG further ar-
gued that the configurational entropy per CRR is roughly in-
dependent of temperature so that the CRR mass is inversely
proportional to the configurational entropy of the fluid—a
quantity that can be estimated experimentally by the dif-
ference of the total and vibrational entropies. Consequently,
the entropy formulation of the AG theory postulates that the
temperature-dependent activation energy for relaxation is in-
versely proportional to Sconf (the “Adam-Gibbs relationship”).
This model has proven to be highly successful to describe
the T dependence of relaxation in both experiments7–9 (where
Sconf is estimated from specific heat measurements) and com-
putational studies10–17 (where Sconf can be formally evaluated
from an energy landscape approach).
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The random first-order transition (RFOT) theory18–20 is
based upon similar ideas to rationalize the rapid growth of re-
laxation time on cooling. In particular, the RFOT theory for-
mulates the problem of the relaxation in glass-forming liquids
in terms of an “entropic droplet model,” or “mosaic” picture,
in which the liquid is divided into metastable regions with a
characteristic size ξ . A consideration of the balance between
the surface and bulk free energies of these regions suggests
a scaling relation between ξ and Sconf. The overall barrier for
relaxation is also assumed to scale with ξ , providing a gener-
alized relationship between Sconf and relaxation. Notably, the
AG relationship can be recovered by an appropriate limit of
RFOT, so that these models are potentially directly linked. As
in the case of the AG theory, RFOT theory does not provide
a specific molecular definition of the length scale of collec-
tive motion. Thus, both the AG and RFOT approaches leave
the precise nature of cooperative rearrangements and their re-
lation to dynamical heterogeneity opens to interpretation and
quantification.

Computer simulations have been particularly helpful to
quantify the nature of dynamical heterogeneity, as the spatial
and temporal heterogeneity of glass-forming fluids is difficult
to probe directly with experiments. It is now appreciated that
atoms or molecules of extreme mobility (or immobility) tend
to cluster, and that the most mobile clusters can be further
divided into groups of atoms or molecules that move cooper-
atively in a roughly co-linear, or string-like fashion,21–27 and
this phenomenon has been confirmed experimentally in col-
loidal particle tracking measurements.28–31 Consistent with
the ideas of the AG and RFOT theories, the sizes of clus-
ters and strings grow on cooling toward Tg, but it is not
clear if either of these structures are appropriate measures
of the size scales envisioned by these theories. Earlier works
have considered both the possibilities of using the mobile
particle clusters or the strings as the CRR of AG, and each
of these studies indicated promising results.32–35 We should
point out that there are other ways to characterize the length
scales of heterogeneity. In particular, the use of a four-point
correlation function offers an approach rooted in the frame-
work of statistical mechanics that reveals a growing dynami-
cal length scale on cooling.36–44

In this work, we systematically dissect cluster and string-
like nature of the heterogenous motion in a model glass-
forming polymer melt, and then consider what measure or
measures of dynamical heterogeneity, if any, may appropri-
ately quantify the size scales envisioned by the AG or RFOT
approaches. In doing so, we expand on a general method-
ology to identify subsets of extreme immobility. Our results
span a broad temperature range, from very high T, to some-
what below the crossover temperature Tc often associated
with mode-coupling theory. We find that, at the characteris-
tic time of maximal clustering, the structures of mobile and
immobile clusters exhibit statistical properties that are con-
sistent with the properties of equilibrium branched polymers,
which are the same as clusters approaching a percolation tran-
sition. When mobile clusters are decomposed into strings, the
geometry of short strings are consistent with self-avoiding
walks, while larger strings (that appear at low temperature)
behave like simple random walks. We find that none of the

cluster types that we study forms compact objects when ex-
amined at their respective characteristic times. Moreover, the
characteristic times of mobile and immobile clusters provide a
physically transparent way to understand the decoupling phe-
nomenon, as the mobile cluster time scales have essentially
the same temperature dependence as diffusive time scales,
while the immobile cluster time scale follows the structural
relaxation time. We consider both mobile clusters and strings
as possible descriptions of CRR in the AG and RFOT models,
and find that the strings – which necessarily incorporate large
mobility and cooperativity of displacement – best accord with
the quantitative description of the mass or length scales of co-
operative clusters described by both these theories.

II. MODEL AND SIMULATION DETAILS

Our results are primarily based on molecular dynamics
simulations of a melt containing 400 chains of “bead-spring”
polymers, each chain consisting of 20 monomers.45 At this
length, the chains are unentangled. All monomers interact via
a force-shifted Lennard Jones (LJ) potential, truncated at 2.5σ

so that dispersive attractions are included (σ is the LJ length
parameter). Neighboring monomers along a chain also inter-
act via a finite extensible nonlinear elastic (FENE) spring po-
tential to create covalent bonds. The FENE parameters are
k = 30ε and R0 = 1.5σ , chosen to create a mismatch in
the length scale of bonded and non-bonded interactions, thus
frustrating crystallization and making the model a good glass
former.46 All values are reported in reduced LJ units. Standard
units for temperature are recovered by multiplying T by ε/kB,
where kB is Boltzmann’s constant. Time is given in units of
(mσ 2/ε)1/2. The simulations cover the range of 0.3 < T < 2.5
at constant density ρ = 1.0. For all T < 1, we perform five in-
dependent simulations to improve statistics. Each simulation
consists of an equilibration run followed by data collection;
the duration of each run is determined from the α relaxation
time (discussed below) to ensure we sample only equilibrium
states. Temperature is controlled via the Nose-Hoover algo-
rithm, which is implemented via the reversible reference sys-
tem propagator algorithm (rRESPA) method using a time step
of 0.002 for bond forces with 3 updates for each non-bonded
force update.47

The dynamics of this model (or the closely related model
that excludes LJ attractions) have been extensively studied
in previous simulations.46 To provide basic characterization
for subsequent detailed analysis, we first consider the re-
laxation of the coherent density-density correlation function
F(q, t) (Fig. 1(a)). We evaluate F(q, t) at the wave vector q0

corresponding to the first peak of the structure factor where
relaxation is slowest (except for the limit q → 0). We define
the α-relaxation time by F(q0, τα) = 0.2. The T-dependence
of τα (Fig. 1, inset) is characterized by simple Arrhenius be-
havior for T > TA; for Tg < T < TA, τα grows significantly
faster on cooling, and is well-approximated by the ubiquitous
Vogel-Fulcher-Tamman (or Williams-Landau-Ferry) expres-
sion:

τα = τ0 exp

[
DT0

T − T0

]
, (1)
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FIG. 1. Characterization of basic dynamical properties of the polymer melt.
(a) The coherent density-density correlation function F(q0, t) for all T. The
α-relaxation time τα is defined by F(q0, τα) = 0.2. Symbols are shown for
the lowest T to indicate typical intervals at which data are collected. (b) The
non-Gaussian parameter α2(t) at each T shows a peak due to the correlated
motion that occurs roughly on the time scale of t*, defined by the maximum
of α2(t). The inset compares the behavior of τα and t*.

where T0 is an extrapolated divergence temperature that is
typically slightly below the laboratory glass transition tem-
perature Tg, and D characterizes the curvature (or fragility)
of τα . From our simulations, the crossover from Arrhenius
behavior TA ≈ 0.8 and T0 = 0.20 ± 0.01. For this system
and density, the characteristic temperature Tc associated with
power-law behavior τ ∼ (T − Tc)−γ has been estimated to be
Tc = 0.35;48 thus, we probe T significantly below Tc. Addi-
tionally, we also know that Tg ≈ 1.2 T0 from the simple and
widely used convention τα(Tg) = 100 s.34 For a simple poly-
mer (like polystyrene) with Tg ≈ 100 ◦C, the reduced units
can be mapped to physical units relevant to real polymer ma-
terials, where the size of a chain segments σ is typically about
1–2 nm, time is measured in ps, and ε ≈ 1 kJ/mol.

Since we will examine in detail the spatial heterogeneity
of the segmental dynamics, we also evaluate the non-Gaussian
parameter α2 as a basic indicator of the time scale and strength
of correlated motion (Fig. 1(b)). The peak of α2 defines the
time t*, which provides a characteristic time scale of the spa-
tially heterogeneous motion. The amplitude of the peak of α2

also increases, a consequence of the increasing degree of spa-
tial correlations of the motion. Although it is not explicitly
documented, it is implicit from many previous works5, 49–52

that t* grows less rapidly than τα on cooling, as confirmed in
the inset of Fig. 1(b). In other words, these characteristic times
“decouple.” This can be expected since t* is a diffusive time
scale (see Appendix A), and the diffusion coefficient D has
long been known to decouple from structural relaxation.3 AG
never envisioned that glass-forming liquids should be charac-

terized by multiple relaxation times; consequently, they did
not distinguish between mass diffusion and momentum dif-
fusion (i.e., viscous relaxation), but their language clearly re-
lates to modeling mass diffusion. Fortunately, since these time
scales maintain a fractional power-law relation over a large
range extending from Tg to TA, the AG (or RFOT) approaches
can be equally applied to either mass or momentum diffusion,
a point that we expand upon below.

III. DYNAMICAL CLUSTERS APPROACHING
THE GLASS TRANSITION

It is widely appreciated that, below the onset tempera-
ture TA, the dynamics become increasingly spatially hetero-
geneous approaching Tg. Regions with either enhanced mo-
bility or diminished mobility form in a spatially correlated
manner, and the motions within mobile regions can be further
dissected into more elementary groups that move in a string-
like, cooperative fashion. In this section, we examine several
ways to characterize correlations in mobility and analyze the
geometry of these structures.

A. Mobile and immobile clusters

Since the distribution of particle mobilities varies con-
tinuously, the first challenge is how to distinguish mobility
subsets. For a variety of systems,5, 51–53 it has been shown that
choosing the subset of particles that have moved farther than
is expected from the Gaussian approximation at the charac-
teristic time t* offers a useful metric to identify the highly-
mobile particles. Depending on the system, these mobile par-
ticles typically account for 5%–7% of the particles below TA.
This is also true for the present system, confirmed in our own
calculations and in Ref. 52. Accordingly, we follow the choice
of Ref. 52 where the same model was examined, and select
mobile particles as the 6.5% of particles with the greatest dis-
placement over any chosen interval t. This allows us so see
the evolution of mobile particle properties over all t.

At the other mobility extreme, we identify particles of ex-
treme immobility. While a variety of methods to identify low
mobility particles have been explored in past literature,5, 54–61

there is considerable variation in the details of these ap-
proaches. Moreover, many studies of immobile particles do
not condition the selection on mobility, but rather on lo-
cal packing considerations (e.g., icosahedral packing, Frank-
Kasper clusters, a sufficient number of neighbors, etc.). Such
attempts are potentially valuable for relating structure to dy-
namical behavior, but in the present work we wish focus
purely on dynamical considerations that should be applica-
ble to characterizing mobility all glass-forming liquids, rather
than any particular fluid having its own unique type of lo-
cal ordering. Consequently, we have developed a criterion
for immobile particles based on the tendency for “caged par-
ticles” to cluster. We provide a detailed description of the
method in Appendix B to avoid breaking the flow of our main
results. Broadly speaking, we can identify caged particles
for any time t by those particles with displacements smaller
than the (weakly T-dependent) plateau value observed in the
mean-squared displacement. We then find the time at which
these caged particles form the largest clusters and evaluate
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FIG. 2. The dynamical average cluster size for (a) high-mobility particles
〈nM(t)〉 and (b) low-mobility particles 〈nI(t)〉 at all T studied. The data are
normalized by the value at t = 0, equivalent the cluster size of the same frac-
tion of particles chosen at random. The definitions of the mobility groups
are discussed in the main text. The inset of part (a) shows the percolation
probability p of mobile particle clusters as a function of T; the dotted vertical
line indicates the temperature where p ≈ 0.5, a standard identifier of the per-
colation transition in finite-sized systems.62 For immobile particle clusters,
p < 0.2 for all T, so that percolation is not prevalent.

what fraction of the system these caged particles constitute.
Similar to the approach for mobile-particle clusters, we fix
this fraction for all t to track the evolution of the clustering of
the immobile particles. Note that the fraction of immobile par-
ticles from this method is T-dependent, increasing from ≈5 %
at the lowest T studied up to 11% at TA. Above TA, the cage
size is not well defined.

Having identified the most and least mobile particles at
each interval t, we examine the average cluster size of the mo-
bile 〈nM(t)〉 and immobile 〈nI(t)〉 subsets. We plot the cluster
sizes (Fig. 2) relative to the cluster size of the same fraction
of particles chosen randomly; for immobile particle clusters,
this eliminates the trivial T-dependence of immobile particle
cluster size that arises from T-dependence of the fraction of
immobile particles (see Appendix B for further discussion).
We define a cluster by the group of nearest-neighbor particles
that have a separation less than the nearest-neighbor distance,
given by the distance of the first minimum rmin = 1.46 in the
density-density pair correlation function. Figure 2 shows the
typical behavior for mobile particle clusters; namely, 〈nM(t)〉
peaks at a characteristic time tM that increases on cooling, and
that the peak value 〈nM(tM)〉 also grows on cooling, indicating
an increase in the spatial extent of correlations. The immo-
bile particle clusters exhibit the same qualitative trend. Note
that we plot the average cluster size, not the weight-averaged
cluster size; the qualitative behavior of both is same.
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iors of τα and t*, shown in Fig. 1(b). (b) and (c) Parametric plots that show
that tM ∼ t* and tI ∼ τα ; the dashed lines indicate an equality between these
quantities.

There are significant differences between 〈nM(t)〉 and
〈nI(t)〉 to consider. First, we see that the relative peak size
of the mobile particle clusters is larger and increases more
rapidly on cooling than that of the least mobile clusters. At the
lowest T studied, the mobile particle clusters become so large
that the percolation probability p, defined as the fraction of
configurations with a spanning cluster, approaches unity (in-
set of Fig. 2(a)). If we define the percolation threshold by pc

= 0.5 (as is common in finite systems62), the percolation tem-
perature Tp ≈ 0.32 for mobile particle clusters. Consequently,
we likely underestimate the size of mobile particle clusters at
the three lowest T studied. For the immobile particles clus-
ters, p < 0.2 for all T, so that finite-size effects should not be
of concern.

The characteristic time scales of these cluster types dif-
fer significantly at low T. Specifically, the time scale for
the peak of the mobile particle clusters tM is significantly
smaller than the peak time tI of the immobile particle clusters
(Fig. 3), similar to the difference in the time scale between t*
and τα . Indeed, parametrically plotting these quantities shows
that tM ∼ t* and tI ∼ τα (Figs. 3(b) and 3(c)), and in fact the re-
spective quantities are nearly equal. The similarity between tM
and t* has been previously noted.33 The linear scalings can be
understood in the context of decoupling phenomena. Specif-
ically, it is widely observed that τα grows more rapidly on
cooling than the time scale associated with the diffusion co-
efficient D, giving rise to a breakdown in the Stokes-Einstein
relation D/T ∼ τα—the same decoupling phenomenon previ-
ously discussed for t*. Decoupling can be qualitatively under-
stood as a consequence of dynamical heterogeneity, since D
will be dominated by the most mobile particles, while relax-
ation functions (and hence τα) will arise from the least mobile
particles. Consequently, we anticipate, and indeed observe,
decoupling between the tI and tM timescale that matches the
decoupling between the t* and τα timescales.
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B. Cluster size distribution and fractal dimension

We next provide a more complete account of the geo-
metrical properties of these clusters. Figure 4 provides a vi-
sualization of typical mobile and immobile particle clusters.
To quantify the structure of these clusters, we first consider
the size distribution P(n) of the clusters at the characteristic
times tM and tI of the mobile and immobile clusters, respec-
tively. This distribution for mobile particle clusters has been
previously examined for a variety of systems, where it is ap-
preciated that P(n) can be described by a power law with an
exponential cut-off, namely,

P (n) ∼ nτF exp(n/n0), (2)

where n0 is proportional to 〈n〉. This distribution arises in the
description of equilibrium branched polymers and clusters ap-
proaching a percolation transition (commonly referred to as
“lattice animals”). We shall return to this analogy to help un-
derstand our findings. The Fisher exponent τF (using standard
notation from percolation theory62) should not be confused
with a time scale.

Figure 5 shows that both the mobile and immobile parti-
cle clusters follow Eq. (2), albeit with different exponents τF.
For mobile-particle clusters, we find τF = 1.85 ± 0.1. Note
that earlier work52 for this same model indicated τF ≈ 1.6, but
that work was limited to much smaller clusters, and as a con-
sequence was dominated by the behavior at small nM. Our τF

estimate is consistent with that for mobile particle clusters in
the Kob-Andersen binary LJ liquid (τ ≈ 1.86),5 and slightly
larger than that for the Kob-Andersen lattice gas model (τ
≈ 1.6). All these τF estimates are smaller than found in
percolation theory near the percolation transition in 3D (τF

= 2.18).62 These variations suggest that τF may be material
dependent. The mass distribution P(n) of the least-mobile par-
ticle clusters exhibits similar scaling features to P(n) for the
most-mobile clusters, but the exponent τF differs. In partic-
ular, τF ≈ 2.2 is close to that expected for percolation, al-
though assignment of a precise numerical value to τF for the
least-mobile clusters is difficult, given the present data.

We can better understand the value of τF by consider-
ing the possibility that mobile and immobile particle clus-
ters are analogous to equilibrium branched polymers, which
are directly related to percolation clusters. In three dimen-
sions, it is known that τF ranges from 1.5 to about 2.2 for
lattice animals63–65 and percolation clusters,62, 66 respectively,
so that τF for branched polymers can be expected to be some-
what variable. This exponent reflects the effect of strong ex-
cluded volume interactions between and within these differ-
ent types of model branched polymers. In mean field theory,
which applies above 8 and 6 dimensions for lattice animals
and percolation clusters, respectively, where the mean field
exponent τF is exactly equal its classical Flory-Stockmayer
estimate 5/2. Basically, lattice animals are swollen branched
polymers and percolation clusters are branched polymers with
screened excluded volume interactions so that these struc-
tures are branched polymer analogs of self-avoiding and ran-
dom walk (more precisely, θ -polymers) polymers describ-
ing equilibrium linear polymer chains. In short, our exponent

FIG. 4. Typical examples of (a) the most mobile and (b) least mobile clus-
ters. Different clusters are shown in different colors, and the segments of all
chains are shown translucent. (c) The same mobile clusters (all colored red)
and immobile clusters (all colored blue) to facilitate comparing their relative
spatial distribution.
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estimates for τF are consistent with the expected exponent
range for branched polymers.

To further characterize the geometrical structure of these
clusters at their characteristic peak times, we examine the
fractal dimension df of the clusters defined by the scaling of
cluster size

n ∼ R
df

g , (3)

where

R2
g = 1

2N

∑
i,j

(ri − rj )2 (4)

is the radius of gyration, and i and j denote particles indices
within a given clusters. Earlier work has suggested that df ≈ 2
for mobile particle clusters,67, 68 which corresponds to the
value for lattice animals in 3D—that is, percolation clusters
below the percolation threshold pc. For mobile-particle clus-
ters, we indeed find that smaller clusters have df ≈ 2 (Fig. 6).
However, for larger clusters, which only occur for lower T, it
appears the scaling crosses over to a larger df ≈ 2.5. Since the
appearance of these large clusters occurs only at low T, ex-
tracting the best fit result for df at each T results in the effec-
tive df growing from roughly 2 to near 2.5 on cooling (insets
of Fig. 6). For immobile clusters, the scaling of mass on Rg for
small and large clusters does not noticeable change with size.
As in the case of mobile clusters, df grows from 2 to near 2.5
on cooling. Thus, there is significant similarity in the geomet-
rical structure of the mobile and immobile particles clusters.
However, the precise values of df should be taken with cau-
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FIG. 6. Scaling of cluster mass n with the radius of gyration Rg to define
the fractal dimension df of (a) mobile and (b) immobile particle clusters. The
solid lines represent the simulation results, and different colors indicate dif-
ferent T, as in previous figures. Small circular symbols are shown for the
lowest T, to indicate the density of data. The bold dashed lines are a guide to
the eye, and provide approximate bounds on df. This is more clearly seen in
the insets, which show the T dependence of df. The dashed lines of the insets
indicate the limiting behaviors discussed in the text.

tion, since the range of the data covers less than a complete
decade in Rg.

We can understand the changing value of df by again con-
sidering the analogy to equilibrium branched polymers and
lattice animals. Specifically, lattice animals are self-avoiding
branched polymers with strong excluded volume interactions,
and have a fractal dimension df = 2 in three dimensions.62, 69

The mobile and immobile particle clusters conform to this
scaling at relatively high T, where they are sparse and not
strongly interacting with each other. Like the mass distri-
bution exponent τF, the fractal dimension df of branched
polymers is also sensitive to excluded volume interactions.
Branched polymers with screened, excluded volume interac-
tions behave like percolation clusters, and have a fractal di-
mension df ≈ 2.5 in 3D.62 Thus, if we consider our clus-
ters to be analogues of branched polymers, the increase of
df upon cooling can be interpreted as the result of screening
of their excluded volume interactions. This situation is natu-
ral since, as the clusters grow upon cooling, the concentration
describing the onset of their mutual interaction will decrease.
We note that this crossover in exponent values has been an-
ticipated for the branched polymer structures associated with
Coniglio-Klein clusters in the Ising model.70

The crossover behavior we observe for the exponent df

with temperature is not apparent in the size-scaling exponent
τF. This might be understood from the fact that, in perco-
lation, τF is far less sensitive than df to changes in cluster
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structure or dimensionality.62, 71 Given that the range of data
used to determine τF and df is rather modest, further study
to determine whether these clusters can be exactly identified
with branched equilibrium polymers is merited. Additionally,
examination of the anisotropy of clusters will be valuable to
improve the comparison to branched polymers, since cluster
shape is often a more discriminating metric of the cluster type
than the size distribution or fractal dimension.72

C. String-like cooperative motion

Mobile-particle clusters can be further decomposed into
subsets of string-like groups of cooperatively moving parti-
cles. We now consider the properties of these “strings,” fol-
lowing an analysis parallel to that just discussed for the clus-
ters. To identify string formed by mobile particles, we follow
the procedures originally developed in Ref. 21. Specifically,
using the same mobile particles that we use to identify clus-
ters, we consider two mobile monomers i and j to be in the
same string if, over an interval t, one monomer has replaced
the other within a radius δ. Following Ref. 22, which exam-
ined the same polymer model, we choose δ = 0.55, although
the results are not strongly sensitive to this choice for rea-
sonable values of δ. Since we study a polymeric system, it
is worth noting that the string-like collective motion is not
strongly correlated with chain connectivity,22 so it should not
be confused with reptation-like motion.

For reference, we first show the average length (number
of monomers) of a string L(t) for all T studied (Fig. 7). As
expected, L(t) has a peak at a characteristic time which we
label tL, and the time scale and amplitude of this peak grow on
cooling, indicating increased cooperative motion nearing Tg.
Since the strings are subsets of the mobile particle clusters,
the peak value of L is significantly smaller than that of the
mobile particle clusters. As a consequence, the percolation
probability of the strings, even at the lowest T simulated, is
negligible.

The characteristic time tL of the strings (Fig. 8) is simi-
lar to tM for the mobile particle clusters, but is slightly larger,
consistent with Ref. 33. Moreover, like tM, tL scales linearly
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with t* (Fig. 8 (inset)). Since t* scales linearly with the char-
acteristic diffusion time (Appendix A), this helps to clarify
that the mobile particle time scales captured by the clusters
and strings relate to a diffusive relaxation time, rather than
the α-relaxation time. This time scale is naturally shorter than
τα as a consequence of the breakdown of the Stokes-Einstein
relation.

To complete the characterization of the strings, we ex-
amine the distribution of string lengths P(L) and their frac-
tal dimension at the characteristic time tL. As expected from
earlier works,21, 22 Fig. 9 shows that P(L) follows an expo-
nential distribution that is characteristic of linear equilibrium
polymers.73 To estimate the fractal dimension df, we exam-
ine the scaling between L and Rg in Fig. 10. For short strings,
we find that df ≈ 5/3, consistent with a self-avoiding walk in
3D. For longer strings, the scaling relation approaches df = 2,
the fractal dimension of simple random walks or self-avoiding
walks with screened, excluded volume interactions.74 This
screening effect has been seen in simulations of dynamically
associating linear chain polymers.75 Since longer strings are

0 10 20 30 40
String Length L

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

P
(L

)

T = 0.30

T = 1.0

FIG. 9. The distribution of string lengths P(L) follows an exponential law
that can be anticipated by analogy with equilibrium polymerization.73
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strings. The solid lines represent the simulation results, and different colors
indicate different T, as in previous figures. Small circular symbols are shown
for the lowest T, to indicate the density of data. The bold dashed lines are a
guide to the eye, and provide approximate bounds on df. This is more clearly
seen in the insets, which show the T dependence of df. The dashed lines of the
inset indicate expected limiting behaviors. Specifically, there appears to be a
modest change in df from ≈5/3 for short strings (the approximate value for
a self-avoiding walk in 3D) to ≈2 (a simple random walk, also characteristic
of many branched polymers). Accordingly, a typical string at low T is less
extended, just as in polymer chains in dilute versus concentrated solutions.

prevalent only at low T, the effective df from fitting the entire
range is T-dependent, growing from 5/3 to 2 on cooling (in-
set of Fig. 10), reflecting an increased screening of excluded
volume interactions upon cooling as in the branched dynamic
clusters. Hence, the strings appear to become somewhat more
irregular in shape on cooling. It has been argued that cooper-
ative motions should become fully compact (i.e., df → 3) at
low T,76 but we see no indication of such a collapse for any
of the cluster types we have examined. As for our data for
mobile and immobile particle clusters, the precise values of
df should be taken with caution, since the range of the data
covers less than a complete decade in Rg.

The time scale at which one examines cooperativity can
be expected to be important in the consideration of the clus-
ter geometry. Thus, we next consider the fact that the geo-
metrical structure of mobile clusters and strings depends on
the time scale on which one examines these objects. Our pre-
vious analysis focused on df at the characteristic peak time
of mobile particle clustering and string size, which is close
to t*, a time that is significantly smaller (at low T) than τα .
Figure 11 shows the temporal evolution of df for the lowest T
studied. While df for mobile particle clusters is weakly depen-
dent on time, df for the strings is indeed strongly dependent on
the time scale considered. In fact, on time scales approaching
the structural relaxation time, the strings appear compact (df

≈ 3), which may explain contradictory claims that coopera-
tive motions should form compact regions at low T.76 On this
long time scale, the strings are quite small. This result empha-
sizes the fact that it is critical to examine the cooperativity of
motion on the appropriate time scale, and thus quantification
of these scales is necessary.
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atively insensitive to t, but the string geometry differs dramatically between
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IV. DYNAMICAL SCALES AND RELAXATION

A central challenge in describing glass formation is the
origin of the rapidly increasing relaxation time approaching
Tg. This is the defining characteristic of fragile glass-forming
fluids. If one makes a natural assumption that relaxation is
an activated process, transition state theory77–79 indicates a
general Arrhenius temperature dependence

τ = τ0 exp[�F/T ], (5)

that is often observed in condensed phase relaxation process
and in the rates of chemical reactions. At high T, �F(T)
≡ �FA, a constant, giving the widely known Arrhenius form.
At lower T, this relation defines a generalized T-dependent
activation free energy:

�F (T ) = T ln τ/τ0, (6)

which we show for our data in Fig. 12. This provides a sim-
ple parametric description of the problem at hand: how can
we understand an activation barrier the grows on cooling to a
value that is several times larger than its high-T limit? Ap-
proaching Tg, this growth typically reaches 4–8 times the
high-T limiting value �FA, and the exponential nature of ac-
tivation leads to extremely large changes in relaxation. The
key element to explain the increase of �F(T) is to recognize
that such values cannot be readily reconciled on the basis of
single particle motion. Both the AG and RFOT approaches
are built upon the notion that many particles are involved in
relaxation, and the scale grows on cooling toward Tg. Accord-
ingly, the change of �F(T) constrains any attempts to explain
the change in relaxation time of glass-forming liquids in terms
of a growing dynamical size scale. Thus, as a simple starting
point, we consider the relative growth of �F with those of the
cluster and string sizes in the inset of Fig. 12. We also make
the mathematically trivial, but conceptually important point,
that the existence of a fractional power law relation between τ

and t* (fractional Stokes-Einstein relation) implies that the re-
duced activation energy applies to both relaxation times, and
indeed all transport properties obeying such a power scaling
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relationship. This explains why the AG model for diffusive re-
laxation can be equally well applied to structural relaxation.

A. Summary of the AG and RFOT predictions

The seminal work of Adam and Gibbs helped to establish
a picture of dynamics nearing Tg where motion is dominated
by “cooperatively rearranging regions,” thereby introducing
the importance of a dynamical size scale. Both the AG and
RFOT approaches build on the activation picture for dynam-
ics. For most fluids, the high T (i.e., T > TA) dependence of
relaxation is given by Eq. (5), where �F = �FA. AG asso-
ciated this high T activation barrier with uncorrelated, single-
particle motion. On cooling toward Tg, AG argued that motion
becomes dominated by CRR, and that the barrier �F is exten-
sive in the number z of rearranging monomers in a CRR, so
that

τ ∼ exp[z�FA/T ]. (7)

AG further argue that the fluid can be decomposed into N/z
such as CRR, each of which has a configurational entropy
sconf, so that the total

Sconf = N

z
sconf. (8)

Consequently, the relaxation can be directly relating Sconf via

τ ∼ exp[A/(T Sconf)], (9)

where the free energy A subsumes previous constants. This
configurational entropy picture has proved highly successful
in capturing the T dependence of many supercooled fluids.7–17

Unfortunately the CRR and Sconf are not explicitly defined by
AG. Fortunately, numerous works have shown that a potential
energy landscape-based definition of Sconf appears robust;10–17

other studies have shown that z might be defined in terms of
string or mobile cluster size32–35—a point we will examine in
the context of both AG and RFOT.

The similar RFOT description is built around a scal-
ing description of the problem.18–20 RFOT theory proposes
a “mosaic” picture, in which the liquid is divided into
metastable regions with a characteristic size ξ (the “mosaic”
length)—conceptually like the CRR idea of AG. RFOT as-
sumes the free barrier for reorganization has a general scaling
with size, so that

�F ∼ ξψ . (10)

Accordingly, the implication is that τ scales as

τ ∼ exp[ξψ/T ]. (11)

The free energy of this “droplet” is a balance between the en-
tropic contribution from the degeneracy of states TScξ

d (for
a compact droplet in dimension d) and surface free energy,
which should scale as ϒ(T)ξ θ , where ϒ is a generalized sur-
face tension of the entropic droplet, and the surface scaling
exponent θ ≤ d − 1. If the entropic droplet is not compact,
such as is the case for our clusters and strings, we can gen-
eralize this argument simply by replacing d with df, as in the
application of the droplet models to critical phenomena. The
ordinary surface tension of many fluids is often found to grow
approximately linearly on cooling, and Cammarota et al.80 ar-
gue that ϒ of RFOT should grow at least linearly on cooling.
Thus, assuming ϒ(T) ∼ T and balancing the surface and vol-
ume effects yields a scaling between ξ and configurational
entropy,

ξ ∼ 1/S
1/(df −θ)
conf . (12)

Combining Eqs. (11) and (12) yields the generalized AG-like
relation between relaxation and entropy,

τ ∼ exp[A/(T Sconf)
ψ/(df −θ)]. (13)

We note that the concept of surface tension here is formally
unclear, since there are no explicitly co-existing phases. How-
ever, subtle differences in the local packing of highly mobile
and immobile particles certainly contributes an energy gradi-
ent near the interface of these regions. Similarly, Refs. 81 and
82 found that mobile-particle clusters found in a melting crys-
tal can be identified with the nucleation of a fluid phase, so
that the notion of a surface tension proper for mobile regions
has a well defined meaning in this context. Further study in
glass-forming liquids may illuminate the notion of the mo-
bile particle clusters having a surface tension. Additionally,
a more general scaling of ϒ than simple proportionality to T
would lead to a slightly different scaling relation between ξ

and Sconf.
The values of the exponents ψ and θ are not fixed in the

theory, but on general physical grounds the exponents should
obey the inequality θ ≤ ψ ≤ d − 1.20, 83 The well-established
entropy form of AG is recovered from RFOT provided that
ψ = (df − θ ), leaving only one free exponent. The orig-
inal presentation of RFOT by Kirkpatrick, Thirumalai, and
Wolynes18 presumes df = d (compact droplets), and argues
that θ = d/2 and ψ = θ , satisfying the AG entropy form
and exponent inequality. More recently, the exponents have
been examined in a number of computational and experimen-
tal analyses;42, 80, 84 these studies are inconclusive regarding a
universal value, but generally report values ψ ≈ 0.7–1 and
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θ ≈ 2–2.3. These values are troubling, since, based on the
exponent inequality, we expect the surface scaling exponent
θ ≤ 2 (for d = 3), and further that θ should be larger than ψ .

Both the AG and RFOT methods offer a way to relate the
size or length scale of motion with relaxation times, but do
not directly specify how this size scale should be measured.
Hence, we now consider if the heterogeneity scales defined by
mobile clusters or strings might be appropriate for use within
these theoretical descriptions. However, we note that, while
many recent studies indeed focus on the size scales of het-
erogenous motion in this context, there are reasons to be cau-
tious, and to consider other possible length scales.42, 85

B. Testing the Adam and Gibbs approach

Although the relation between configurational entropy
and relaxation (Eq. (9)) proposed by AG is not their start-
ing point, this is the most commonly tested and most broadly
supported prediction of the theory. Hence we first wish to test
whether this relation is also valid in our system. Evaluation of
Sconf is a rather cumbersome process, and so we describe the
process fully in Appendix C. Figure 13 verifies the validity of
Eq. (9). The inset of Fig. 13 shows that extrapolating a simple
polynomial fit of Sconf to low T yields “Kauzmann” tempera-
ture TK = 0.20 where Sconf → 0. This is exactly the same value
T0 obtained from independently fitting τ by the VFT function.
Hence, the vanishing of Sconf coincides with the independently
extrapolated divergence of relaxation time, a comforting con-
sistency check. We note that Sconf is a relatively small contri-
bution to the overall fluid entropy in comparison to the vibra-
tional entropy of our polymer glass-forming liquid. This fact
makes the experimental estimation of the difference between
the total and vibrational contributions to the entropy partic-
ularly uncertain in polymer fluids, since there is no reliable
means of estimating the vibrational entropy to high accuracy.

We now continue to examine the proposal laid out by
AG by considering the relation of τ to a heterogeneity scale.
As described above, the foundation of AG is that the activa-
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FIG. 13. Confirmation that the entropy representation of the AG theory
(Eq. (9)) is valid for the present system. The inset shows the T dependence
of Sconf and the extrapolating vanishing temperature TK, which is consistent
with T0 of the VFT fit (Eq. (1)) to τ .

tion energy for relaxation is extensive in the mass z of the
CRR (Eq. (7)). Since the CRR are not defined by AG, pre-
vious works have considered whether the string mass L33, 34

or the mobile particle cluster mass nM
33, 52 might be appropri-

ate measures. For water, it was shown that nM has the desired
behavior, but over a relatively limited range of τ ;32 for a sim-
ple spherically symmetric model, both L and nmobile show the
desired relation to z, but over an even more limited range.33

More recently, motivated by description of AG that CRR are
the most basic units of reorganization, Refs. 34 and 35 found
L is an appropriate measure of z, but did not consider clus-
ter size nM. Unfortunately, none of these works could defini-
tively exclude other measures for z. It has also been appre-
ciated that other length scales associated with heterogeneity,
such as from a four-point density correlation function, would
be too large at Tg to be consistent with z.43 We shall return to
this point in the conclusion.

Here, we check the plausibility of both cluster and string
size as a measure of z over a substantially broader range of
τ than previous works to provide improved clarity. We thus
consider substituting for z the peak string size L/L(TA) or the
peak mobile particle cluster size nM/nM(TA), where we nor-
malize by the value at TA so that z has the expected value
near unity for T ≥ TA. Figure 14 shows that, for T � TA log τ

is linear if we use L as a proxy for z, but not using nM. The
deviation from cluster size is a consequence of the fact that
the mobile particle cluster size grows noticeably more rapidly
than the effective activation free energy, a fact already appre-
ciated in the inset of Fig. 12. If AG is assumed correct at high
T, such an exponential relation should continue into the T
> TA range, where z should be near unity, or at least reach
its asymptotic value. In such a case, the value of �F from the
low T fit using Eq. (7) should be comparable to the high T es-
timate of �FA from an Arrhenius fit. Using z = L/L(TA), we
estimate �F = 1.8, somewhat smaller that the value estimated
from the Arrhenius fit, �FA = 2.2. One interpretation of this
discrepancy is that using L(TA) as the normalizing factor is
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FIG. 14. Testing the mobile particles cluster and string sizes for consistency
with the AG prediction that the activation energy is linear in the size z of
CRR. The cluster size nM grows too rapidly on cooling to fit with the AG
picture, the string size L appears consistent. See also Fig. 12 for a direct
comparison of L and nM to the relative change in �F with no free parameters
in the comparison.
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not entirely correct, and a somewhat smaller value would be
more appropriate.

Given the apparent success of the string mass L to de-
scribe τ and the broadly reported validity of the entropy for-
mulation of AG, we test for consistency between these rep-
resentations by checking the expected relation Sconf ∝ 1/z
(Fig. 15). The data support the linearity of the relationship, al-
though there are some systematic deviations at both the lowest
and highest T. This suggests that, while L captures the gener-
ally expected behavior of the CRR, a more detailed refine-
ment of the determination of L may provide a more accurate
description of CRR.

The string length L appears to be the most quantitatively
valid choice for the CRR, and is also consistent with the qual-
itative philosophy of AG. Specifically, recall that AG envision
the CRR are dominated by the smallest group of cooperatively
moving monomers. The physical motivation for this is that
probability of such a group will diminish exponentially with
the size, so that the smallest possible group that allows for re-
arrangement will dominate the relaxation. The strings are both
the smallest such unit, and also the only candidate in which
all particles move in a cooperative fashion. While the particles
of mobile particles clusters are obviously spatially correlated,
there is no a priori cooperativity in their displacements. The
strings are precisely the manifestation of mobile particle co-
operativity. However, we should be careful to point out that,
while the qualitative language of AG is appealing, in the end
the quantitative predictability is the most important measure.
We shall next explore which measure best quantitatively fits
with the formulation of the RFOT theory.

C. Testing the RFOT approach

As discussed in Sec. IV B, the validity of the entropy
formulation of AG dictates that ψ = (df − θ ). Hence there
is only one free exponent in the RFOT formulation. We shall
consider two approaches to determine these exponents, which
provides an internal consistency check.

A simple, but significant, difference between AG and
RFOT is that RFOT refers to a length scale of cooperative
motion, rather than the extent or particle mass of collective
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FIG. 16. The mean radius of gyration 〈Rg〉 for the strings and mobile particle
clusters. This defines a characteristic length that we can test within the RFOT
framework.

motion. Consequently, to test whether any of the clusters or
strings might be appropriate, we need to consider a length
scale that defines the size of mobile clusters or strings. The
natural length scale for these objects is the radius of gyration
Rg at their respective characteristic times, which we show
in Fig. 16. Hence we can directly evaluate the exponent ψ

from the scaling of τ with 〈Rg〉 (Eq. (11)) for the strings and
clusters.

Figure 17 shows the scaling of τ with 〈Rg〉 for the strings
and clusters, from which we obtain with the best fit for the ex-
ponent ψ . Given our previous findings for the AG approach
indicating that string mass relates to τ while the cluster mass
does not, we would expect a superior fit for the strings. In-
stead, we find that the exponent ψ ≈ 1.3 for strings and clus-
ters is identical within the limits of our determination. Essen-
tially, this is a consequence of the fact that the T-dependence
of Rg is nearly the same for strings and for clusters, while the
T-dependence of cluster mass differs noticeably. This appar-
ent paradox can be resolved by recognizing that the largest
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FIG. 17. Testing Eq. (11) to determine the exponent ψ of RFOT. Both the
mobile particle clusters and strings yield a consistent fit with ψ ≈ 1.3. The
data for the mobile particle clusters are shifted by two units along the abscissa
for clarity of the figure.
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FIG. 18. Evaluation of the surface scaling exponent θ from the scaling law
(Eq. (12)). The value df − θ ≈ 1.3 is consistent with ψ , and with the expec-
tations from AG.

dimension of a cluster dominates Rg, so that systems with dif-
ferent mass can have similar Rg. This is consistent with the
expectation that the largest dimension of mobile clusters is
associated with long, string-like clusters.

We next check for consistency of the value ψ with the
expectation that ψ = df − θ . We can independently deter-
mine df − θ from the scaling of Sconf with Rg (Eq. (12)), as
shown in Fig. 18. While the data deviate from a power-law
at high T, the lower T data indicate df − θ ≈ 1.3, consistent
with our estimates of ψ . The success of these independent
approaches significantly increases our confidence in these es-
timates. Based on our previous findings for df for strings, we
can also estimate θ = 0.3–0.7. The value of θ is small in com-
parison with values estimated Refs. 42, 80, and 84. However,
a small value for θ is physically plausible. For example, in
the Ising spin glass, a direct evaluation yields θ ≈ 0.2–0.35
in three dimensions.83, 86, 87 Moreover, our value obeys the ex-
pected inequality θ ≤ ψ ≤ d − 1, which the previous esti-
mates violate.42, 80, 84

While both string and mobile particle cluster sizes
demonstrate reasonably scaling within RFOT, it appears the
success of the cluster description is dependent on the limit-
ing dimension dictated by the string size. The strings also ap-
peared to be the only reasonable description of CRR within
the AG framework. Hence, we can find a satisfying consis-
tency for both the AG and RFOT descriptions using the strings
as a measure of CRR or mosaic scale, where the exponent val-
ues of RFOT are constrained to satisfy the formulation of AG.

V. DISCUSSION AND CONCLUSION

We have examined the geometrical structure of clusters
and string-like cooperative motions in a model glass-forming
polymer melt. We found an aesthetically pleasing symmetry
in the geometry of high- and low-mobility clusters, i.e., they
both conform to statistical geometry of equilibrium branched
polymers. In doing so, we also developed a novel method
to identify low-mobility particles based on persistent caging.
Most importantly, we have examined the question of whether

these heterogeneity scales can be identified with the scales
anticipated by the AG and RFOT descriptions of glass forma-
tion. We found the strings apparently provide the most con-
sistent description of the CRR or mosaic length described by
these respective theories.

An important observation arising from our work is that
these different quantifications of heterogeneous dynamics in
fact correspond to distinct relaxation time scales, and there-
fore distinct processes of importance in the relaxation of a
glass former. In other words, there is no single or unique het-
erogeneous dynamical scale in the system. These immobile
particles are apparently related with the breakdown of the lin-
ear scaling between diffusive and viscous relaxation, while
the fragility of glass-formation is apparently more related to
string-like cooperative motion.34 Thus, conventional wisdom
regarding the role of heterogeneous dynamics on typical as-
pects of glassy behavior, requires further examination. Appar-
ently, there is no single dynamic heterogeneity scale in glass-
forming liquids.

There is further evidence of these scales and their signif-
icance on condensed matter relaxation. For example, recent
simulations of superheated Ni crystals82 also find a large in-
crease of the non-Gaussian parameter, mobile particle clus-
ters, and string-like collective motion. However, in this sys-
tem, there are no immobile particle clusters of finite extent
present; there are only immobile atoms in a crystal lattice,
and mobile particles having the usual constituent strings. Sig-
nificantly, there is no decoupling of structural relaxation from
the self-intermediate scattering function and the diffusion co-
efficient, nor any stretched exponential decay of the self-
intermediate scattering function in the superheated crystal.
Similarly, in a recent study85, 88 on the dependence of dy-
namics on spatial dimensionality, it is found that the degree
of Stokes-Einstein breakdown decreases while the fragility
paradoxically increases with spatial dimensionality for di-
mensionality greater than two. The findings of these studies
suggest that the immobile particle clusters, rather than mo-
bile particles, are primarily responsible for decoupling and
stretched exponential stress relaxation of glass-forming liq-
uids. This possibility merits systematic study and points to the
different types of heterogeneity (mobile and immobile parti-
cles) having significantly different impacts on the fluid dy-
namics. In other words, dynamic heterogeneity comes in dif-
ferent types that must be properly discriminated.

As we alluded to earlier, another common approach to
extract a length scale for heterogeneity is via a four-point cor-
relation function. Proper determination of the four-point scale
ξ 4 can be strongly affected by finite size,43, 91 but careful ex-
tractions have show that ξ 4 grows more rapidly than would
be expected for the CRR of the AG theory.42 It is possible
that ξ 4 could be consistent with the mosaic scale of the RFOT
theory, but we expect a single measure should be compatible
with both approaches, since they are largely complementary.
The reason for the difference in the scaling of ξ 4 with that
observed for the strings can be readily understood by consid-
ering their characteristic times; ξ 4 is determined at the time of
the peak in the four-point susceptibility, which has essentially
the same temperature dependence as τα . As we have shown,
τα is also the time scale of immobile particles, and is distinct
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from the time scale (and hence length scale) of mobile parti-
cles and strings. Accordingly, ξ 4 is primarily sensitive to par-
ticles of low mobility.59 This is a consequence of the fact that,
in defining the four-point function, a particle size a is intro-
duced to limit the effects of vibrational motion, and is chosen
to be larger than the typical cage size, following Ref. 39. The
choice of a controls the scale of relaxation associated with the
four-point function. Choosing a smaller value of a, closer to
the cage size, for example, should lead to a measure of hetero-
geneity on a smaller time scale, perhaps similar to t*; such a
choice would presumably be more sensitive to string-like ex-
citations. Efforts in this direction, along with other approaches
to extract the size scale of string-like cooperativity, would be
valuable to better understand the findings of the present pa-
per within a more traditional liquid-state correlation function
approach.

In conclusion, the analysis of the relationship between
the various clusters in the context of the AG and RFOT theo-
ries reveals that the strings are a particularly good candidate
for the CRR of AG theory. While a similar conclusion may
also be reached in the context of RFOT, the fact that all the
heterogeneous clusters considered here show fractal structure
with a fractal dimension lower than d = 3 makes a conclusive
comparison difficult at this time, since the mosaic picture in
the RFOT framework normally assumes the rearranging re-
gions to be compact. Consequently, it will be valuable to re-
visit the formulation of RFOT, as the suggested fractal nature
of the entropic droplets has implications for the concept of the
effective surface tension of these regions.
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APPENDIX A: NON-GAUSSIAN AND DIFFUSIVE TIME
SCALES

The non-Gaussian parameter α2(t) is often used to quan-
tify the deviation of particle or segmental displacements from
the Gaussian distribution expected for simple fluids. The max-
imum deviation occurs at a characteristic time t*, and it is well
known that t* is smaller than τα , and has a weaker tempera-
ture dependence than τα . It is then natural to wonder what
physical process t* relates to.

Combining the Stokes-Einstein relation for spheres

D = kBT

6πηRh

, (A1)

where D is the diffusion coefficient, η is the fluid viscosity,
and Rh is the particle hydrodynamic radius, with Maxwell’s
relation τ = η/G∞ (where G∞ is the high-frequency shear
modulus) leads to

D

T
∝ 1

τ
. (A2)
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FIG. 19. Linear scaling between t* and the (inverse) characteristic diffusion
time D/T in the Kob-Anderson binary LJ mixture,49 demonstrating that the
time scale t* corresponds to the time scale for mass diffusion.

In other words, the reduced diffusion coefficient D/T should
define an inverse relaxation time. Given the relative slow vari-
ation of t* with T compared to τα from the intermediate scat-
tering function, we check whether t* can be identified with
a diffusive relaxation time defined in this way. Due to the
polymeric nature of our system, D cannot be readily evalu-
ated, since mean-squared displacement will only be linear on
a much longer time scale, associated with the chain center-
of-mass diffusion; this requires chain displacements at least
on the order of the chain radius of gyration, more than we
can readily simulate at low T. However, we can check for
a relation between D/T and t* for the Kob-Anderson binary
Lennard-Jones fluid,49 the most commonly studied computa-
tional glass-forming system, where low T data is accessible.

Figure 19 shows that the (inverse) characteristic diffusion
time D/T is linear with t* for the entire range of data, covering
several decades. This result clarifies that t* can be associated
with a diffusive time scale. Given the known “decoupling” of
structural relaxation and D/T from the Stokes-Einstein rela-
tion, we accordingly expect the same decoupling between t*
and τα in our polymer system, as observed in Fig. 1.

It should be appreciated that the decoupling relation be-
tween D for the overall chain displacements of a polymer and
the long-time shear-stress relaxation time can exhibit a sep-
arate relationship from t* and τα .89 This is a consequence
of the fact that heterogeneity at the scale of the chain radius
of gyration can differ from heterogeneity at the monomer or
segmental scale. Thus, in the polymer system, t* should be
thought of as relating to a local monomer diffusive process,
and τα to a segmental structural relaxation time.

APPENDIX B: IMMOBILE PARTICLE DEFINITION

To study the structure of highly immobile particles, we
need to devise a physically sensible algorithm that picks out
an appropriate subset of low-mobility particles. Since the
caging of particles by their neighbors is one of the hallmarks
of glass formation, we utilize the concept of “caged particles.”
To do so, we must identify the cage size. We can formally do



12A541-14 Starr, Douglas, and Sastry J. Chem. Phys. 138, 12A541 (2013)

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

time

10
-3

10
-2

10
-1

10
0

〈r
 2
(t

)〉

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
510

-3

10
-2

10

(a)

(b)

-1

10
0

10
-2

10
-1

10
0

10
1

10
2

10
3

0

0.5

1

1.5

2

d (ln 〈r 2
(t )〉)_________

d (ln t )

0.3 0.4 0.5 0.6 0.7
Temperature

0.15

0.2

0.25

0.3

0.35

0.4

C
ag

e 
S

iz
e

r ca
ge
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cage〉1/2. Particles with a squared displacement less than 〈r2

cage〉 are defined as “caged
particles.”

this via the mean-squared displacement 〈r2(t)〉. Figure 20(a)
shows that 〈r2(t)〉 has a plateau at a characteristic size in the
approximate range 0.04–0.09 (for a cage radius 0.2–0.3). To
precisely define the cage size, we take advantage of the fact
that the logarithmic derivative d(ln 〈r2(t)〉)/d(ln t) exhibits a
clear minimum on the time scale of particle caging, tcage. We
thus define the cage size by rcage ≡ 〈r2(tcage)〉1/2. We show
the T dependence of rcage in Fig. 20(b) for T � TA; at higher
T, 〈r2(t)〉 transitions from ballistic motion (d(ln 〈r2(t)〉)/d(ln t)
= 2) to sub-diffusive motion (d(ln 〈r2(t)〉)/d(ln t) ≈ 0.6 with-
out intervening particle caging. The sub-diffusive behavior is
well known for this model,46 arising from polymeric effects.

Having unambiguously defined a cage-size, we proceed
to track the behavior of caged particles (i.e., particles with
displacement less than rcage). Figure 21 shows the fraction
of caged particles, which, as expected, decreases with time.
We note that, formally, this fraction is identical to the “self-
overlap” Qs(t) used in the four-point correlation function
formalism,39 although the particle “size” used is typically

fixed at a value 0.3, independent of T, and substantially larger
than the cage size at low T.

Since we wish to understand the tendency for these caged
particles to be spatially correlated, we evaluate the average
cluster size of these immobile particles. However, we must
take into account the fact that the number of these caged par-
ticles decreases with time, and thus there is a trivial effect on
the cluster size of the number of caged particles. To remove
this trivial effect, we normalize the caged particle cluster size
by the cluster size of the same fraction of particles chosen
at random; this allows us to see how the tendency to cluster
compares to the random case, independent of the nature of the
underlying dynamics.

Figure 22 shows the normalized cluster size of the caged
particles as a function of time. The qualitative behavior
matches what we observe for other dynamical clusters: as
smaller times, the effect of clustering is weak, and there is
a characteristic time where the cluster size reaches a peak. As
discussed in the main text, this characteristic time is similar to
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FIG. 21. Dynamical fraction of caged particles for T < TA.

the α-relaxation time. This time, along with the peak size of
the caged-clusters, defines the characteristic features that we
wish to capture.

To simplify the analysis of immobile particles and draw
a parallel to the analysis of the mobile particles (where there
is a fixed, t-independent fraction of particles considered), we
consider a simplification of this approach that still captures
the characteristic peak time and amplitude of caged particles.
Specifically, if we look at the characteristic peak time of the
caged particles, we can identify the fraction of caged particles
at this time, which we show in Fig. 23. This characteristic
fraction of caged particles increases with T, as the mobility
subsets become less distinct at higher T. For all subsequent
analysis, we use this T-dependent fraction for all time, to par-
allel the approach for the mobile particles. By construction,
this fixed fraction reproduces the characteristic time and size
the our time-dependent fraction of caged-particles reveals, so
that we do not alter these important features.

A natural concern is the sensitivity of this approach to
the definition of the cage size, since this is the only parameter
that must somehow be chosen. To test this, we also consid-
ered a T-independent cage size rcage of 0.2 or 0.25. We find
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FIG. 22. The normalized cluster size for caged particles for T < TA, where
the cage is well-defined.
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FIG. 23. The characteristic fraction of low mobility particles for several dif-
ferent approaches. All approaches yield similar fractions for all T.

that these T independent sizes of course yield quantitatively
different results, but that the time and size scales of the im-
mobile particles all scale in the same way. Additionally, as
shown in Fig. 23, the characteristic fraction of caged particles
is nearly the same as our definition based on a T-dependent
cage size, showing the precise definition of cage size does not
strongly affect the characteristic immobile fraction.

We also considered another approach to extract the low
mobility subset. This approach is motivated by Ref. 52, where
they determined a characteristic fraction of highly mobile par-
ticles by finding the fraction that maximizes the cluster size
formed by those highly mobile particles relative to same frac-
tion of particles chosen at random. This measure provides a
way to capture the fraction of particles that most strongly ex-
hibit spatial clustering, without consideration of the under-
lying mobility distribution. We use the same approach, but
finding the fraction of least mobile particles that maximizes
the relative clustering. We show this characteristic fraction to-
gether with our estimates from the cage size in Fig. 23, and
find that we recover nearly the same fraction by this approach.
Apparently, the characteristic fraction of immobile particles is
not strongly sensitive to the exact choice of parameters, pro-
viding confidence in the robustness of our analysis. For the
calculations presented in the main body of the manuscript,
we simply use the mean of all these estimates.

Finally, we point out that in all approaches to identify low
mobility particles, there appears to be an unanticipated feature
at T ≈ 0.35, previously estimated as the characteristic Tc for
this system at this density.48 This is a curious result, but at
present we have no explanation for such behavior.

APPENDIX C: CALCULATION OF CONFIGURATIONAL
ENTROPY

Our goal is the evaluation of the configurational entropy
Sconf, which enumerates the density of stable potential energy
minima sampled by the melt at equilibrium. Procedures for
evaluating Sconf have been developed and applied to a va-
riety of systems, including water,15 binary LJ mixtures,10, 11

silica,16 and orthoterphenyl.17 We follow a similar procedure,
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FIG. 24. (a) The total entropy S and vibrational entropy as a function of
temperature. (b) The configurational component Sconf = S − Svib. The line is
a guide for the eye.

whereby the overall entropy can be partitioned into vibra-
tional Svib and configurational components, i.e.,

S = Sconf + Svib. (C1)

Our approach will be to evaluate directly S and Svib, and by
their difference Sconf (summarized in Fig. 24).

1. Total entropy

To evaluate the absolute entropy of the polymer, we
employ the thermodynamic integration technique.47 In this
method, the free energy is calculated by parametrically cou-
pling the potential energy of the system Upoly to the potential
energy Uref of a reference system for which the free energy
can be directly, analytically evaluated. The coupling potential
is normally of the form:

U (λ) = (1 − λ)Upolymer + λUref, (C2)

where the coupling parameter 0 ≤ λ ≤ 1. The free energy can
then be evaluated by

Fpoly = Fref −
∫ 1

0
〈Uref − Upoly〉dλ. (C3)

This procedure is complicated by the FENE potential that
bonds nearest neighbors, since it diverges as the bond length
approaches R0. The normally chosen reference potentials do
not restrain the bond length, and so the contribution from the
FENE potential diverges strongly as λ → 1. To avoid this

complication, we perform a “two-step” thermodynamic inte-
gration, where we first perform an integration from the FENE
potential to a harmonic bond potential:

Uharm = kharm

2
(r − R1)2 (C4)

that does not exhibit the strong divergence as bond length
grows; when then perform an integration from the harmon-
ically bonded polymer to the reference system. We choose
kharm = 980 and R1 = 0.87 so that the location of the mini-
mum and the curvature at the minimum are very near to that of
the FENE bond (when combined with the core LJ repulsion).
While the free energy for the harmonically bonded polymer is
not analytically known, it is not needed, as it drops out in the
final expression for the free energy:

Fpoly = Fref −
∫ 1

0
〈Upolymer − Uharm〉dλ1

−
∫ 1

0
〈Uref − Uharm〉dλ2. (C5)

For the reference potential, we use a potential that shares
the system periodicity,90 namely,

Uref(r) = −U0

3∑
i=1

cos

(
2π

L
ri

)
, (C6)

where U0 = 10 is the amplitude of the potential, L is the length
of the container, and ri is the coordinate of a particle in di-
rection i. For an N particle system interacting through Uref,
evaluation of the partition function shows that

Fref = 3N

β
ln

(
ρ

1
3 �

I0(βU0)

)
. (C7)

Here ρ is the number density and I0 (x) is the modified Bessel
function of the first kind. Combining with Eq. (C5), we have
F for the our system at some fixed temperature T0 and density.
Accordingly, we can evaluate the entropy for a reference T0,

S(T0) = E(T0) − F (T0)

T0
. (C8)

We obtain S for any T by exploiting the fact that

CV = T

(
∂S

∂T

)
V

=
(

∂E

∂T

)
V

, (C9)

so that

S(T ) =
∫ T

T0

1

T

(
∂E(T )

∂T

)
V

dT + S(T0). (C10)

The integrand can be evaluated numerically from data for
E(T). Since we must explicitly include Planck’s constant ¯,
we select units appropriate for a monomer of a typical poly-
mer, like polystyrene; specifically, we choose ε = 1 kJ/mol, σ
= 1 nm, and m = 100 g/mol; using these units, ¯= 0.0635078
kJ ps/mol. The resulting S(T) is shown in Fig. 24(a).

2. Vibrational entropy

The vibrational component of the entropy Svib reflects the
contributions of the basin shape to the vibrational behavior.
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We can partition

Svib = Sharm + Sanh. (C11)

In the harmonic approximation, the basin entropy

Sharm = kB

3N−3∑
n=1

[
1 − ln

(
¯ωn

kBT

)]
, (C12)

where ωn are the normal modes associated with the basin min-
imum. To evaluate ωn, we must first determine the basins as-
sociated with the equilibrium liquid. To do so, we perform a
conjugate gradient minimization of the potential energy, start-
ing from instantaneous snapshots of the equilibrium polymer;
we locate the corresponding minimum, or inherent structure
(IS), within a numerical tolerance of 10−15. Using the con-
figuration at the minimum, we evaluate the Hessian matrix:

Hij = ∂V

∂
ri∂
rj

, (C13)

the matrix of the curvatures of the potential energy. In the
harmonic picture, the eigenvalues λn = mω2

n, so we directly
obtain the normal modes {ωn}. For each T, we generate the
IS and {ωn} for at least 100 configurations that are well-
separated temporally.

The anharmonic contribution to Svib for many systems is
negligible. To check the anharmonic contribution Sanh, we first
consider an anharmonic energy:

Eanh(T ) = E − 3

2
NkBT − eIS (C14)

where eIS is the inherent structure energy and 3/2 NkBT is the
contribution for a harmonic solid. We can then evaluate

Sanh(T ) =
∫ T

0

1

T̄

∂Eanh

∂T̄
dT̄ . (C15)

To obtain a valid estimate of Eanh for a basin, we must heat the
IS very rapidly to insure that the system cannot change basins
while heating. We perform such heating for at least 100 IS
generated from initial equilibrium configurations at T = 0.31.
In principle, Eanh (and thus Sanh) depend on the equilibrium T
from which the ISs are obtained; in practice, we find that the
ISs from different T have a nearly identical density of states
ρ(ω) and Eanh(T). Hence we can use the behavior of Eanh(T)
from one set of IS for any T. We find that the contribution
anharmonic contribution is rather small and negative, and can
be well described by Eanh = −0.065 T for T ≤ 0.8; the results
in Sanh(T) = −0.065 ln T.

Combining all vibrational contributions, we show Svib(T)
in Fig. 24(a), and the resulting Sconf(T) = S(T) − Svib(T) in
Fig. 24(b).
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39N. Lačević, F. W. Starr, T. B. Schrøder, and S. C. Glotzer, J. Chem. Phys.

119, 7372 (2003).
40L. Berthier, G. Biroli, J.-P. Bouchaud, L. Cipelletti, D. E. Masri, D. L’Hôte,

F. Ladieu, and M. Pierno, Science 310, 1797 (2005).
41G. Biroli, J.-P. Bouchaud, K. Miyazaki, and D. R. Reichman, Phys. Rev.

Lett. 97, 195701 (2006).
42S. Karmakar, C. Dasgupta, and S. Sastry, Proc. Natl. Acad. Sci. U.S.A.

106, 3675 (2009).
43S. Karmakar, C. Dasgupta, and S. Sastry, Phys. Rev. Lett. 105, 015701

(2010).
44E. Flenner and G. Szamel, Phys. Rev. Lett. 105, 217801 (2010).
45G. S. Grest and K. Kremer, Phys. Rev. A 33, 3628 (1986).
46J.-L. Barrat, J. Baschnagel, and A. Lyulin, Soft Matter 6, 3430 (2010).
47D. Frenkel and B. Smit, Understanding Molecular Simulation From Algo-

rithms to Applications (Academic, San Diego, CA, 1996).
48F. W. Starr, S. Sastry, J. F. Douglas, and S. C. Glotzer, Phys. Rev. Lett. 89,

125501 (2002).
49W. Kob and H. C. Andersen, Phys. Rev. E 51, 4626 (1995).
50F. Sciortino, P. Gallo, P. Tartaglia, and S.-H. Chen, Phys. Rev. E 54, 6331

(1996).
51W. Kob, C. Donati, S. J. Plimpton, P. H. Poole, and S. C. Glotzer, Phys.

Rev. Lett. 79, 2827 (1997).
52Y. Gebremichael, T. B. Schrøder, F. W. Starr, and S. C. Glotzer, Phys. Rev.

E 64, 051503 (2001).
53D. Thirumalai and R. D. Mountain, Phys. Rev. E 47, 479 (1993).
54K. Vollmayr-Lee and A. Zippelius, Phys. Rev. E 72, 041507 (2005).

http://dx.doi.org/10.1038/35065704
http://dx.doi.org/10.1063/1.1286035
http://dx.doi.org/10.1146/annurev.physchem.51.1.99
http://dx.doi.org/10.1088/0953-8984/14/23/201
http://dx.doi.org/10.1103/PhysRevE.60.3107
http://dx.doi.org/10.1103/PhysRevE.60.3107
http://dx.doi.org/10.1063/1.1696442
http://dx.doi.org/10.1063/1.1712251
http://dx.doi.org/10.1063/1.476348
http://dx.doi.org/10.1063/1.1739394
http://dx.doi.org/10.1103/PhysRevLett.83.3214
http://dx.doi.org/10.1038/35051524
http://dx.doi.org/10.1063/1.478337
http://dx.doi.org/10.1063/1.1367386
http://dx.doi.org/10.1088/0953-8984/19/25/256207
http://dx.doi.org/10.1103/PhysRevE.63.041201
http://dx.doi.org/10.1103/PhysRevE.69.041503
http://dx.doi.org/10.1103/PhysRevE.65.041205
http://dx.doi.org/10.1103/PhysRevA.40.1045
http://dx.doi.org/10.1146/annurev.physchem.58.032806.104653
http://dx.doi.org/10.1063/1.1796231
http://dx.doi.org/10.1103/PhysRevLett.80.2338
http://dx.doi.org/10.1063/1.1597473
http://dx.doi.org/10.1063/1.1644539
http://dx.doi.org/10.1103/PhysRevLett.97.045502
http://dx.doi.org/10.1103/PhysRevLett.97.045502
http://dx.doi.org/10.1063/1.1644538
http://dx.doi.org/10.1063/1.481621
http://dx.doi.org/10.1103/PhysRevE.65.041502
http://dx.doi.org/10.1103/PhysRevE.60.5725
http://dx.doi.org/10.1103/PhysRevLett.107.065702
http://dx.doi.org/10.1103/PhysRevLett.107.208303
http://dx.doi.org/10.1126/science.287.5453.627
http://dx.doi.org/10.1103/PhysRevLett.90.085506
http://dx.doi.org/10.1103/PhysRevLett.90.085506
http://dx.doi.org/10.1021/jp0512412
http://dx.doi.org/10.1103/PhysRevLett.106.115702
http://dx.doi.org/10.1039/c2sm26800k
http://dx.doi.org/10.1103/PhysRevA.37.4439
http://dx.doi.org/10.1209/0295-5075/15/3/013
http://dx.doi.org/10.1209/0295-5075/15/3/013
http://dx.doi.org/10.1080/13642819908223066
http://dx.doi.org/10.1063/1.1605094
http://dx.doi.org/10.1126/science.1120714
http://dx.doi.org/10.1103/PhysRevLett.97.195701
http://dx.doi.org/10.1103/PhysRevLett.97.195701
http://dx.doi.org/10.1073/pnas.0811082106
http://dx.doi.org/10.1103/PhysRevLett.105.015701
http://dx.doi.org/10.1103/PhysRevLett.105.217801
http://dx.doi.org/10.1103/PhysRevA.33.3628
http://dx.doi.org/10.1039/b927044b
http://dx.doi.org/10.1103/PhysRevLett.89.125501
http://dx.doi.org/10.1103/PhysRevE.51.4626
http://dx.doi.org/10.1103/PhysRevE.54.6331
http://dx.doi.org/10.1103/PhysRevLett.79.2827
http://dx.doi.org/10.1103/PhysRevLett.79.2827
http://dx.doi.org/10.1103/PhysRevE.64.051503
http://dx.doi.org/10.1103/PhysRevE.64.051503
http://dx.doi.org/10.1103/PhysRevE.47.479
http://dx.doi.org/10.1103/PhysRevE.72.041507


12A541-18 Starr, Douglas, and Sastry J. Chem. Phys. 138, 12A541 (2013)

55K. Vollmayr-Lee, W. Kob, K. Binder, and A. Zippelius, J. Chem. Phys. 116,
5158 (2002).

56M. Dzugutov, S. I. Simdyankin, and F. H. M. Zetterling, Phys. Rev. Lett.
89, 195701 (2002).

57H. Tanaka, J. Non-Cryst. Solids 351, 3385 (2005).
58H. Tanaka, T. Kawasaki, H. Shintani, and K. Watanabe, Nat. Mater. 9, 324

(2010).
59J. C. Conrad, P. P. Dhillon, E. R. Weeks, D. R. Reichman, and D. A. Weitz,

Phys. Rev. Lett. 97, 265701 (2006).
60A. V. Anikeenko and N. N. Medvedev, Phys. Rev. Lett. 98, 235504 (2007).
61U. R. Pedersen, T. B. Schrøder, J. C. Dyre, and P. Harrowell, Phys. Rev.

Lett. 104, 105701 (2010).
62D. Stauffer and A. Aharony, Introduction To Percolation Theory (Taylor

and Francis, London, 1998).
63D. S. Gaunt, M. F. Sykes, G. M. Torrie, and S. G. Whittington, J. Phys. A

15, 3209 (1982).
64E. J. J. van Rensburg and N. Madras, J. Phys. A 30, 8035 (1997).
65H.-K. Janssen and O. Stenull, Phys. Rev. E 85, 051126 (2012).
66N. Jan and D. Stauffer, Int. J. Mod. Phys. C 09, 341 (1998).
67N. Giovambattista, S. V. Buldyrev, F. W. Starr, and H. E. Stanley, Phys.

Rev. E 72, 011202 (2005).
68H. E. Castillo, C. Chamon, L. F. Cugliandolo, J. L. Iguain, and M. P.

Kennett, Phys. Rev. B 68, 134442 (2003).
69J. F. Douglas, Phys. Rev. E 54, 2677 (1996).
70J.-S. Wang and D. Stauffer, Z. Phys. B: Condens. Matter 78, 145

(1990).
71G. Paul, R. M. Ziff, and H. E. Stanley, Phys. Rev. E 64, 026115 (2001).
72F. Family, T. Vicsek, and P. Meakin, Phys. Rev. Lett. 55, 641 (1985).

73J. F. Douglas, J. Dudowicz, and K. F. Freed, J. Chem. Phys. 125, 144907
(2006).

74K. F. Freed, Renormalization Group Theory of Macromolecules (Wiley-
Interscience, New York, 1987).

75J. P. Wittmer, A. Milchev, and M. E. Cates, J. Chem. Phys. 109, 834 (1998).
76J. D. Stevenson, J. Schmalian, and P. G. Wolynes, Nat. Phys. 2, 268 (2006).
77J. F. Kincaid, H. Eyring, and A. E. Stearn, Chem. Rev. 28, 301 (1941).
78R. M. Barrer, Trans. Faraday Soc. 39, 48 (1943).
79L. Qun-Fang, H. Yu-Chun, and L. Rui-Sen, Fluid Phase Equilib. 140, 221

(1997).
80C. Cammarota, A. Cavagna, G. Gradenigo, T. S. Grigera, and P. Verrocchio,

J. Chem. Phys. 131, 194901 (2009).
81T. Das, S. Sengupta, and M. Rao, Phys. Rev. E 82, 041115 (2010).
82H. Zhang, M. Khalkhali, Q. Liu, and J. F. Douglas, J. Chem. Phys. 138,

12A538 (2013).
83D. S. Fisher and D. A. Huse, Phys. Rev. B 38, 386 (1988).
84S. Capaccioli, G. Ruocco, and F. Zamponi, J. Phys. Chem. B 112, 10652

(2008).
85S. Sengupta, S. Karmakar, C. Dasgupta, and S. Sastry, Phys. Rev. Lett. 109,

095705 (2012).
86W. L. McMillan, Phys. Rev. B 30, 476 (1984).
87A. J. Bray and M. A. Moore, J. Phys. C: Solid State Phys. 17, L463 (1984).
88S. Sengupta, S. Karmakar, C. Dasgupta, and S. Sastry, “Breakdown of

the Stokes-Einstein relation in two, three, and four dimensions,” J. Chem.
Phys. (this special topic issue).

89A. P. Sokolov and K. S. Schweizer, Phys. Rev. Lett. 102, 248301 (2009).
90F. Vargas Lara and F. W. Starr, Soft Matter 7, 2085 (2011).
91S. Karmakar and I. Procaccia, Phys. Rev. E 86, 061502 (2012).

http://dx.doi.org/10.1063/1.1453962
http://dx.doi.org/10.1103/PhysRevLett.89.195701
http://dx.doi.org/10.1016/j.jnoncrysol.2005.09.009
http://dx.doi.org/10.1038/nmat2634
http://dx.doi.org/10.1103/PhysRevLett.97.265701
http://dx.doi.org/10.1103/PhysRevLett.98.235504
http://dx.doi.org/10.1103/PhysRevLett.104.105701
http://dx.doi.org/10.1103/PhysRevLett.104.105701
http://dx.doi.org/10.1088/0305-4470/15/10/025
http://dx.doi.org/10.1088/0305-4470/30/23/007
http://dx.doi.org/10.1103/PhysRevE.85.051126
http://dx.doi.org/10.1142/S0129183198000261
http://dx.doi.org/10.1103/PhysRevE.72.011202
http://dx.doi.org/10.1103/PhysRevE.72.011202
http://dx.doi.org/10.1103/PhysRevB.68.134442
http://dx.doi.org/10.1103/PhysRevE.54.2677
http://dx.doi.org/10.1007/BF01317367
http://dx.doi.org/10.1103/PhysRevE.64.026115
http://dx.doi.org/10.1103/PhysRevLett.55.641
http://dx.doi.org/10.1063/1.2356863
http://dx.doi.org/10.1063/1.476623
http://dx.doi.org/10.1038/nphys261
http://dx.doi.org/10.1021/cr60090a005
http://dx.doi.org/10.1039/tf9433900048
http://dx.doi.org/10.1016/S0378-3812(97)00176-3
http://dx.doi.org/10.1063/1.3257739
http://dx.doi.org/10.1103/PhysRevE.82.041115
http://dx.doi.org/10.1063/1.4769267
http://dx.doi.org/10.1103/PhysRevB.38.386
http://dx.doi.org/10.1021/jp802097u
http://dx.doi.org/10.1103/PhysRevLett.109.095705
http://dx.doi.org/10.1103/PhysRevB.30.476
http://dx.doi.org/10.1088/0022-3719/17/18/004
http://dx.doi.org/10.1063/1.4792356
http://dx.doi.org/10.1063/1.4792356
http://dx.doi.org/10.1103/PhysRevLett.102.248301
http://dx.doi.org/10.1039/c0sm00989j
http://dx.doi.org/10.1103/PhysRevE.86.061502

