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Dynamical clustering and a mechanism for raft-like
structures in a model lipid membrane

Francis W. Starr,*a Benedikt Hartmanna and Jack F. Douglasb

We use molecular dynamics simulations to examine the dynamical heterogeneity of a model single-

component lipid membrane using a coarse-grained representation of lipid molecules. This model

qualitatively reproduces the known phase transitions between disordered, ordered, and gel membrane

phases, and the phase transitions are accompanied by significant changes in the nature of the lipid

dynamics. In particular, lipid diffusion in the liquid-ordered phase is hindered by the transient trapping of

molecules by their neighbors, similar to the dynamics of a liquid approaching its glass transition. This

transient molecular caging gives rise to two distinct mobility groups within a single-component

membrane: lipids that are transiently trapped, and lipids with displacements on the scale of the

intermolecular spacing. Most significantly, lipids within these distinct mobility states spatially segregate,

creating transient “islands” of enhanced mobility having a size and time scale compatible with lipid “rafts,”

dynamical structures thought to be important for cell membrane function. Although the dynamic lipid

clusters that we observe do not themselves correspond to rafts (which are more complex,

multicomponent structures), we hypothesize that such rafts may develop from the same universal

mechanism, explaining why raft-like regions should arise, regardless of lipid structural or compositional

details. These clusters are strikingly similar to the dynamical clusters found in glass-forming fluids, and

distinct from phase-separation clusters. We also show that mobile lipid clusters can be dissected into

smaller clusters of cooperatively rearranging molecules. The geometry of these clusters can be

understood in the context of branched equilibrium polymers, related to percolation theory. We discuss

how these dynamical structures relate to a range observations on the dynamics of lipid membranes.
I. Introduction

Lipid membranes are among the most intensely studied
forms of condensed matter. Yet many aspects of these ubiq-
uitous biological structures remain poorly understood,
especially dynamical characteristics related to their function
in living systems. It is widely appreciated that heterogeneity
of the membrane is essential to biological function, and in
living membranes is oen discussed as the “lipid-ra”
concept.1 However, the denition and experimental quanti-
cation of dynamically heterogeneous structures of
membranes and monolayers – and their relation to lipid
ra formation – remains an ongoing challenge.2 This unsat-
isfactory situation exists even in the case of single-compo-
nent lipid membranes, where supramolecular assembly
and phase separation of the myriad components of
living cell membranes do not complicate investigation.3

Nonetheless, even without the complexities of living cells, it
ty, Middletown, CT 06459, USA. E-mail:

n, National Institute of Standards and

, USA

7

is apparent that single component membranes can be
intrinsically heterogeneous.4–7 Consequently, a rst princi-
ples explanation of membrane heterogeneity in biological
systems naturally begins by properly understanding the
intrinsic heterogeneity of simple, single-component
membranes.

While there has been much focus on structural aspects of
membranes based on the lipid ra model, there is an
increasing appreciation of heterogeneity in the dynamics and
the potential impact of this phenomenon for diverse
biophysical phenomena. In particular, there has been exami-
nation of coordinated lipid movement in recent simulations of
lipid dynamics5–9 and such motion has been inferred by
neutron scattering measurements.10 Similar coordinated
motion has been widely studied in measurements of glass-
forming liquids,11–13 and some lipid simulation studies briey
mention the qualitative similarity of ‘dynamic heterogeneity’
in the lipid membranes to observations in glass-forming
liquids. However, these works do not consider a quantitative
comparison between the dynamics of lipid membranes and
glass-forming liquids based on the established theoretical
tools for quantifying collective motion in the eld of glass
formation. The present work focuses exactly on such a
This journal is © The Royal Society of Chemistry 2014



Fig. 1 Simulation snapshot of a typical bilayer at T ¼ 287 K. The red
beads are the hydrophilic heads, and the grey beads are the hydro-
phobic tails. Beads are not drawn to scale.
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comparison, and our analysis reveals striking quantitative
similarities between the collective and heterogeneous
dynamics of glass-forming liquids and the dynamics of lipid
membranes. Moreover, this heterogeneity may play an
important role for understanding the dynamical structure of
‘ras’ in living membranes.

Any unifying framework for the dynamics of membranes and
ra-like heterogeneity must account for a number of basic
physical characteristics, including: (i) the occurrence of coex-
isting “immobile” and “mobile” lipid molecules that exhibit
different displacement kinetics in single-particle molecular
tracking studies;5,14 (ii) intermittency of protein displacements,
the occurrence of coexisting mobile and immobile protein
populations, and the correlated displacement of proteins within
cells;15,16 (iii) the occurrence of collective particle rearrangement
motions, a phenomenon observed directly in membrane asso-
ciated proteins in living cells,15,17 as well as in model lipid
membranes;6,7 (iv) the formation of island and hole structures
of the membrane topography that seem to persist at equilib-
rium, even in single-component lipid lms;4,18,19 (v) a strong
sensitivity of the uidity of lipid membranes to molecular
additives (e.g., anesthetics, antibiotics, neurotransmitters,
proteins) that inuence molecular packing in the lipid layer.20–26

Many of the referenced studies have emphasized the short-
comings of continuum theory for these materials, and some
invoke free volume ideas developed in the theory of glass-
forming liquids to rationalize trends in lipid mobility data,27–29

further suggesting the connection to the physics of glass-
forming liquids.

As a step towards a molecular based understanding of these
dynamical features, we quantify and explain the nature of
heterogeneity of lipid dynamics via simulation of a single-
component lipid bilayer. We consider how our ndings account
for many of the aforementioned observations, the possible
connection between the dynamics of lipid membranes and
glass-forming liquids, and the relation to the concept of lipid
ras. To this end, we examine a simple, coarse-grained model
for a lipid that has been demonstrated to reproduce many of the
canonical features of lipid membranes.30,31 We choose this
simple representation because it allows us to readily examine
both the phase behavior, as well as dynamical behavior on the
millisecond time scale, while still being feasible using current
typical computational resources. Due to the coarse-grained
nature of our lipid model, our simulations are intended to
describe general trends and essential aspects of lipid transport
rather the properties of any particular lipid membrane. In
particular, we observe clear evidence for cooperative lipid
motion and dene a precise metric for this motion that should
give guidance for measurements aimed at quantifying collective
motion in membranes. Specically, our ndings indicate that
the dynamics within the liquid-ordered (Lo) phase of the
membrane exhibits signicant heterogeneity in the lipid
mobility, where lipid molecules can be unambiguously parti-
tioned into two well-dened classes, caged and mobile lipid
molecules. Importantly, the mobile lipids strongly segregate
into transient islands having a size and time scale compatible
with lipid ra structures, suggesting that ra behavior may
This journal is © The Royal Society of Chemistry 2014
develop in large part due to the inherent dynamical heteroge-
neity of the lipid molecules. Additionally, we examine the
precise nature of the cooperativity of lipid motion within the
fractal mobile regions, and nd that motion is dominated by a
replacement mechanism of the molecules, in striking accord
with glass-forming liquids. We nally discuss how these nd-
ings t with many of the above observations on real
membranes.

Our ndings for the dynamical heterogeneity of our model
membrane share many striking similarities to the dynamics of
glass-forming liquids. Obviously, lipid membranes are distinct
from glass-forming liquids, but the strong intermolecular
interactions in both systems apparently lead to a similar
tendency for dynamical clustering and collective motion. Like-
wise, recent studies on the interfacial dynamics of nano-
particles,32 the melting and freezing of nanoparticles,33 the
melting of crystals,34 and the dynamics of grain boundaries35–37

have revealed similar dynamical features, further supporting
the possible universal nature of collective molecular motion in
strongly-interacting condensed materials. Consequently,
further exploration of the degree of universality in the under-
lying dynamical structure of these materials is merited using
computational tools and theoretical ideas developed previously
in the eld of glassy materials.
II. Modeling and simulations

In order to facilitate the study of large time scales associated
with the slowing of molecular motion in the ordered phase of a
lipid bilayer, we have chosen to use a very simple, solvent free,
coarse-grained model for lipid molecules developed by Cooke,
Kremer and Deserno.30,31 This model represents a lipid by three
beads, with one head-bead and two tail-beads (Fig. 1). To mimic
the behavior of lipids, there are favorable interactions between
lipid tails, and neutral head interactions. It has been demon-
strated that this model captures the important qualitative
features of lipids, including the spontaneous formation of a
bilayer. A detailed description of the model is provided by
Cooke and Deserno.30 Here, we briey cover the most important
features associated with the present study.

The excluded volume of each lipid bead is represented
by a Weeks–Chandler–Andersen (WCA) potential, i.e. a
Soft Matter, 2014, 10, 3036–3047 | 3037



Fig. 2 (a) The lipid areal density has a clear transition from a liquid
disordered (Ld) to a liquid-ordered (Lo) state around temperature T ¼
315 K, and to a gel phase at lower T. (b) The tail orientational order
parameter hSi shows an increase in orientation of lipids along the axis
perpendicular to the membrane in the Lo phase. (c) The rotationally
invariant order parameter hQ6i shows an increase in hexatic ordering
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Lennard-Jones (LJ) potential that is truncated and shied at the
location of the minimum so that there is only core-repulsion.
The WCA interactions between tail beads have a diameter s,
while head–head and head–tail beads have an interaction
diameter 0.95s. Connectivity between the three beads is
provided by a nitely extensible non-linear elastic (FENE) bond
potential.38 Additionally, the lipids are stiffened by a harmonic
bending potential between the head bead and the further tail
bead. A key for the success of this coarse-grained representation
is the ability to tune the range of the attractive interactions
between tail beads. Two functional forms have been considered
for this expandable range,30 and here we choose to adopt the
expandable Lennard-Jones representation. More specically,
between tail beads, we use a LJ potential were the minimum is
expanded by inserting a ‘at’ region of size wf. We choose wf ¼
0.3s, which yields a substantial range of simple uid behavior
for a tensionless membrane.30

For this simple coarse-grained model, quantities can be
expressed in reduced Lennard-Jones units, where 3 (the LJ
energy scale) is the unit of energy, length is in units of s, and

time is in units s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

3

ms2

�s
. While the model should not be

taken as a quantitative representation of any specic lipid, we
can approximately map these reduced units to physical values,
given the typical scales of lipid membranes. Assuming a typical
membrane thickness z 5 nm, s z 0.7 nm. Given a diffusion
coefficient in the simple uid phase z 1 mm2 s�1, s z 10 ns.30

Finally, the transition between disordered and ordered uid
states for a lipid like DPPC (dipalmitoylphosphatidylcholine)
occurs around 315 K.39,40 This allows us to set an approximate
energy scale 3 z 4.6 kJ mol�1. To simplify comparison to
experiments, we will use this mapping in the presentation of
our results.

Our ndings are based on a series of molecular dynamics
(MD) simulations for a lipid membrane consisting of N ¼
1250 lipids in a cubic simulation box with periodic boundary
conditions, using the LAMMPS MD suite.41 To implement the
model in LAMMPS, we added the LJ potential with an
expandable range to LAMMPS (code available upon request).
For each of the 14 temperatures between T ¼ 0.5 and T ¼ 1.0
(reduced units), we rst perform a preliminary simulation at
xed isotropic pressure P ¼ 0 to determine the equilibrium
area per lipid. Since surface tension is dened by the differ-
ence between lateral and transverse pressure, which are both
zero in this case, the membrane is tensionless. Using the
resulting volume values, we carry out further equilibration
with a xed simulation box size in the NVT ensemble,
controlling temperature via a Nosé–Hoover thermostat.42

These are the starting congurations for our production
simulations, which are also carried out at xed box size,
corresponding to tensionless membranes. For each T, we
simulate from 24 to 72 independent trajectories, to improve
our statistics. For T # 0.56 (the Lo phase, in reduced units),
production and equilibration runs are each 108 steps, with an
integration time step dt ¼ 0.006, mapping to z6 ms of real
time. At higher T, we run 107 steps, or z0.6 ms of real time.
3038 | Soft Matter, 2014, 10, 3036–3047
III. Membrane thermodynamics and
structure

Before we examine the dynamics of our model membrane
system, we briey characterize the thermodynamics and struc-
ture of the membrane to orient ourselves with respect to
experimentally known behavior of a typical lipid membrane.

Simple lipid membranes, such as made from DPPC or
DMPC, exhibit a quasi-2D liquid–liquid phase transition
between states with distinct areal density.40 The high tempera-
ture uid phase is disordered, with weak tail orientation, and
has relatively large mobility. This phase is commonly referred to
at the liquid-disordered (Ld or La) phase. On cooling the Ld
phase condenses to a liquid-ordered (Lo) phase, which is more
densely packed, has greater tail orientation, and has lower
mobility. At even lower T, there are gel states with near van-
ishing mobility. We rst precisely identify these states for the
tensionless membrane. Fig. 2 shows the mean area per lipid A
as a function of temperature T for a tensionless membrane
which exhibits a discontinuous drop in A. The values of A
correspond to densely packed uid phases, as opposed to a gas-
like state. For the tensionless membrane, the Lo–Ld transition
occurs between temperatures 310 K to 315 K. We also conrmed
that the transition between the Lo and Ld phase can be driven by
lateral pressure under isothermal conditions. Thus, the
of the head beads entering the Lo phase.

This journal is © The Royal Society of Chemistry 2014



Fig. 3 The in-plane structure of the lipid heads, quantified by (a) the
structure factor S(q) and (b) radial distribution function g(r). The hexatic
ordering of the lipids in the Lo phase is characterized by secondary
features in S(q) indicated by the arrows. Similarly, the order is also
reflected in the persistent oscillations of g(r). For reference to later
figures, note that first neighbors can be defined as those beads with a
separation less than the first minimum of g(r), which occurs at r z
1.05 nm. Curves are shifted vertically for clarity of the figure: lowest T is
at the top, highest T is at the bottom. A larger gap is left between data
for the Lo and Ld phases.
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qualitative behavior of the areal density matches physical
expectations. At even lower T z 275 K, the membrane has a
transition to a denser gel phase with near vanishing mobility.
(Mobility is evaluated in the next section.) The large time scales
needed to study low mobility prevents us from equilibrium
study of the gel state.

The Lo–Ld transition is accompanied by changes in the lipid
structure. The Lo phase is expected to exhibit a greater degree of
orientation of the tails. We quantify the lipid orientation by the
orientational order parameter,

hSi ¼ 1

2

�
3uz

2 � 1
�

(1)

where uz is the z-component of the head-to-tail unit vector of the
lipid, and z is average normal direction to the membrane. A
value hSi ¼ 1 corresponds to alignment perpendicular to the
plane of the membrane, while hSi ¼ 0 corresponds to an
isotropic system. The inset of Fig. 2(b) shows that hSi increases
discontinuously at the same time as A decreases. Therefore, as
expected from experiment, the denser phase is accompanied by
an increased orientation of lipid tails.

The increased lipid density in the Lo phase also gives rise to
increased orientational order of the lipid heads in the
membrane plane. For example, in DPPC, lipids in the Lo phase
pack with predominantly hexagonal order in the membrane
plane.43 Such orientational order can be quantied by an
orientational order parameter J6 ¼

P
j
hexpð6ifijÞi; where fij is

the angle between neighboring lipids i and j. However, this
measure is only meaningful if we can dene a preferred orien-
tation. Since the membrane lacks long-range order (as we shall
briey show), such a preferred orientation cannot be globally
dened. Instead, we use the rotationally invariant orientational
order parameter

hQ6i ¼ h244p13 X6
m¼�6

 
1

Nb

XNb

j

Y6mðq; fÞ
!2
3
5

1=2i (2)

where Y6m(q, f) is the spherical harmonic function, and the sum
on j is over Nb nearest neighbors. Since we are interested only in
the order in the plane of the membrane, we take q ¼ p/2, and f

is the angle in the membrane plane between near neighbors
with respect to the arbitrary coordinate system. Since this
quantity is rotationally invariant, the choice of coordinate
system does not affect the value of Q6. The sixth spherical
harmonic is chosen since it yields the largest value for an ideal
hexagonal lattice, Q6 z 0.741.

Fig. 2(c) shows that, like A and hSi, hQ6i also changes
discontinuously entering the Lo phase. hQ6i increases in the Lo
phase relative to the Ld phase, indicative of increased lateral
order, but is still considerably smaller than that of a perfect
hexagonal lattice, indicating a substantial degree of disorder.

To formally conrm that these are indeed liquid (amor-
phous) ordered membranes, as opposed to crystalline ordered,
we evaluate the static structure factor S(q) for the lipid heads in
the plane of the membrane. Fig. 3 demonstrates the amorphous
structure of both phases, as there are no Bragg peaks beyond the
This journal is © The Royal Society of Chemistry 2014
characteristic rst neighbor peak at q0 z 9.3 nm�1. However,
note the there is a signicant increase in the ordering of the
high-density phase (compare S(q) just above the transition with
just below). Specically, in the Lo phase, there are features
located at

ffiffiffi
3

p
q0 and 2q0, the expected locations for a triangular

lattice. This type of ordering is commonly observed in 2D, and is
referred to as a hexatic phase.44,45 The hexatic phase is charac-
terized by exponential positional but quasi-long-range orienta-
tional correlations, and a rst-order transition between the
liquid and hexatic phases (as observed in Fig. 2) has been
robustly demonstrated for 2D liquids.46

Finally, to complete the characterization of static structure of
our model membrane, we also include the radial distribution
function g(r) in the membrane plane, which is related to S(q) via
Fourier transform. Fig. 3 shows that, in the Lo phase, there is rather
long-ranged order, as would be expected for hexatic structure.
Soft Matter, 2014, 10, 3036–3047 | 3039
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IV. Membrane dynamics
A. Lipid diffusion

We rst characterize the membrane dynamics in terms of mean
lipid mobility. With experimental diffusion measurements in
mind, we evaluate the mean-squared displacement hr2(t)i of the
lipid head beads in the plane of the membrane, as shown in
Fig. 4(a). In the high T liquid-disordered phase, hr2(t)i is ballistic
at very short time t (i.e. hr2(t)i � t2) and crosses over to linear
(hr2(t)i � t) behavior at larger t, as expected for simple diffusion.
Note that, on the time and length scale of ballistic motion in the
simulation, the dynamics are not physically relevant, since the
model has coarse-grained the atomic details at this scale; only
motion beyond the nanosecond scale is physically meaningful
for the simulated lipid dynamics. Below the transition to the Lo
phase, there is a dramatic gap in hr2(t)i, demonstrating that the
Lo phase is signicantly less mobile, as expected. Moreover,
hr2(t)i exhibits a substantial plateau region. This plateau is
characteristic of the transient ‘caging’ of lipids by nearest
neighbors which hinders diffusion. At sufficiently large t, lipids
‘escape’ from their cages and a linear (diffusive) behavior of
hr2(t)i is recovered.

This transient caging feature of hr2(t)i is ubiquitous in glass-
forming uids, where the diffusion coefficient becomes
vanishingly small. This plateaus is a rst indication that the
Fig. 4 (a) The in-plane mean-squared displacement hr2(t)i of lipid
heads. The gap in the data occurs at the Lo–Ld transition. In the Lo
phase, hr2(t)i shows a substantial t-range where the displacement is
nearly constant. This transient ‘caging’ is a universal characteristic of
fluids approaching a glass transition. (b) The non-Gaussian parameter
a2(t). In the Lo phase, a2 shows a pronounced peak, which grows larger
on cooling, indicating the non-Gaussian nature of bead displace-
ments. The characteristic time t* of the large peak of a2(t) also grows
on cooling.

3040 | Soft Matter, 2014, 10, 3036–3047
dynamics of liquid-ordered phase might share some basic
characteristics of glass-forming liquids, motivating a more
careful analysis from the perspective and tools conventionally
applied to glass-forming liquids. We evaluate the in-plane
diffusion coefficient from the Einstein relation,

D ¼ lim
t/N

�
r2ðtÞ�
4t

: (3)

Fig. 5 shows that the change in the behavior of hr2(t)i results
in a discontinuous drop in D at the Lo–Ld transition by more
than a factor 10. For T below the lowest T shown, the system
enters the gel state, and D is smaller that we can estimate from
equilibrium simulations.

We now consider how local uctuations in themobility affect
the mean lipid molecular displacements. In the cases of
ballistic or diffusive motion, displacements are known to follow
a Gaussian distribution. In contrast, on the time scales of
transient caging in glass-forming systems, displacements are
typically not Gaussian, and the degree of deviation is commonly
quantied by the non-Gaussian parameter a2(t), which in 2D
has the form

a2ðtÞ ¼
�
r4ðtÞ�

2
�
r2ðtÞ�2 � 1: (4)

For Gaussian displacements, this ratio of moments should be
zero, and otherwise positive. Fig. 4(b) shows that a2(t)z 0 for all t
in the high T, Ld state, where hr2(t)i has correspondingly simple
behavior. In the Lo state, the transient caging is accompanied by
signicant growth of a2(t), which dissipates for large t as diffusive
time scales are reached. Accordingly, a2(t) has a characteristic
time t* on which displacements are most non-Gaussian. The
amplitude of both a2(t*) and t* increase on cooling, as the
transient caging become progressively more pronounced.

In glass-forming uids,47 as well as in the more obviously
related case of the hexatic phase of 2D uids,48 the origin of this
Fig. 5 The diffusion coefficient extracted from the asymptotic t
behavior of hr2(t)i. The transition to the Lo phase is marked by a drop of
D by more than a factor 10.

This journal is © The Royal Society of Chemistry 2014
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non-Gaussian behavior arises from correlations in the
motion of a modest fraction of atoms or molecules that vary
both spatially and temporally. This phenomenon is
commonly referred to as dynamical heterogeneity in the
literature on glass formation.11,12,49 To discern the different
contributions to intermolecular motion, it is valuable to
examine the van Hove correlation function Gs(r, t), which
quanties the distribution of particle displacements r at a
time t. Accordingly, Fig. 6 shows Gs(r, t*) for the lipid heads,
when lipid displacements show the largest deviation from a
simple Gaussian distribution. Gs(r, t*) has a pronounced
peak at small displacements, and a long tail, extending to
more than the interparticle spacing of the head groups. This
general feature is again a universal feature of glass-forming
uids.

Importantly, it is possible to dissect Gs(r, t*) into two distinct
groups. The transient trapping of lipids has a characteristic size
scale hu2i dened by the value of hr2(t)i in the plateau region
(Fig. 4(a)). If the displacements within this cage region are
Gaussian, then the van Hove of these trapped particles should
obey

2prGcageðrÞ ¼ 2r�
u2
� e�r2

�
hu2i: (5)

Fig. 6 shows that such a Gaussian accounts well for the
primary peak of Gs(r, t*). Hence, the tail of Gs(r, t*) should be
associated with those head beads which are able to escape their
local surrounding.

If we assume these mobile lipids can also be described by a
Gaussian

2prGmobileðr; tÞ ¼ 2r�
rmobile

2ðtÞ�e�r2
�
hrmobile

2ðtÞi: (6)
Fig. 6 (a) The van Hove function 2prGs(r, t*) at the time t* of the
maximum of non-Gaussian behavior for a representative T ¼ 293 K.
The van Hove is well-described by a super-position of two Gaussian
functions, representing localized, low-mobility lipids (green line), and
highly-mobile lipids (blue line). The red line shows that the superpo-
sition of these terms describes well the simulation results (circles).

This journal is © The Royal Society of Chemistry 2014
with a characteristic displacement hrmobile
2(t)i, then we can

describe Gs(r, t*) to high precision by the superposition of
Gaussian functions

Gs(r, t*) ¼ (1 � f)Gcaged(r) + fGmobile(r, t*), (7)

where f represents the fraction of mobile lipids. Considering
the behavior of Gs(r, t*) for all T in the liquid-ordered state,
Fig. 7 shows the T dependence of hu2i, hrmobile

2(t*)i. Note that
hu2i is determined directly from the plateau value of hr2(t)i (see
Fig. 4(a)), while hrmobile

2(t*)i and f are le as t parameters. The
mean mobile bead displacement hrmobile

2i1/2 varies from 1.1 to
1.3 bead diameters – slightly larger than the typical bead
spacing. We nd that the fraction f of mobile lipids is roughly
constant, with a mean value of f ¼ 0.267 averaged over all T in
the Lo phase. For the remainder of the manuscript, mobile
lipids are dened as the fraction f ¼ 0.267 of the most mobile
lipids over any given interval t.

In summary, we have built a picture of single lipid motion
that can be partitioned into two groups: those lipids that ‘rattle’
in the local environment dened by their neighbors, and a
smaller fraction f of lipids that move roughly an interparticle
spacing, presumably displacing (or replacing) a neighboring
lipid.
B. Mobile lipid clusters and cooperative motion

In a variety of strongly interacting condensed materials, a broad
distribution of molecular mobility is accompanied by a
tendency for those atoms or molecules with similar mobility to
cluster, and for highly mobile molecules to move in a cooper-
ative fashion. Accordingly, we now examine the spatial
Fig. 7 The Debye–Waller factor (determined independently) for the
localized lipids (black), and mean-square displacement hrmobile

2(t*)i of
mobile lipids (green). These values are used in the description of the
van Hove functions for mobile and immobile lipids, given in eqn (5)
and (6).

Soft Matter, 2014, 10, 3036–3047 | 3041



Fig. 8 A representative simulation snapshot at T ¼ 293 K of the head beads in a bilayer: (a) mobile beads are colored red, and caged beads are
white; (b) mobile beads are colored by the distinct clusters that they form; (c) within each cluster, we color distinctly those particles that replace
each other, resulting in many quasi-string-like structures. The configuration used for all panels is identical, to facilitate comparison. All beads
have the same diameter, but are not drawn to scale for the purposes of visualization.

Fig. 9 (a) The distribution P(S) of tail orientations S for mobile and
immobile head beads. While themeans of these distributions differ, the
overlap between them precludes using the value of S as a structural tag
to differentiate mobility. (b) Similar to (a), the distribution P(Q6) of
hexagonal order Q6 for mobile and immobile groups shows broad
overlap.
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correlations of molecular motion within the lipid bilayer, where
qualitatively similar physical conditions are operative.

Having already established that there are two broad mobility
classes within our membrane, the rst consideration is to
visualize the location of these different groups. Fig. 8(a) shows
the head beads on one side of a typical bilayer, where the beads
are colored according to whether they are mobile (red) or caged
(white) over the time interval t*. From this image, it is readily
apparent that there are strong spatial correlations in these
groups that result in substantial lipid molecule clustering.
Fig. 8(b) and (c) show a further dissection of the collection of
mobile head beads, into sub-groups that move cooperatively,
which we discuss later in this section.

The strong spatial correlation in the locations of the mobile
lipid molecules is reminiscent of the formation of phase sepa-
ration domains in the vicinity of a critical point for a phase
transition.50 Consequently, it is natural to check whether there
is a structural distinction between these groups that might be
attributable to domains with order like the Ld or Lo phase.
Indeed, an evaluation of the local orientational measures S or
Q6 shows that the mobile regions have a slightly smaller mean
order (by z5%), while immobile regions also have a slightly
enhanced mean order (also by z5%). However, this does not
mean an individual lipid molecule can be identied as mobile
or immobile based simply on their local orientation. The reason
is that the distribution of S or Q6, shown in Fig. 9, is very broad,
so that a lipid with a given local order might well be either
mobile or immobile. In other words, while there is a correlation
between mean structure and mobility, this correlation is weak
when viewed at a local, single molecule scale. The absence of a
clear structural signature in these mobility groups indicates
that clustering is not a manifestation of phase separation
domains associated with the Lo–Ld phase transition. We provide
further evidence to support this assertion below.

To move beyond the qualitative observation that mobile
heads tend to group together, we quantify the size of clusters
formed by these beads. To do so, for each interval t, we examine
the fraction f ¼ 0.267 (determined in the previous section) of
the most mobile lipids. We dene a cluster of mobile lipids as
those mobile beads that are nearest neighbors, where nearest
neighbors are dened as beads having a separation less than
3042 | Soft Matter, 2014, 10, 3036–3047
1.05 nm – the location of the rst minimum of the pair corre-
lation function g(r) (see Fig. 3(b)). Such a cluster analysis only
makes sense in the Lo phase, since in the Ld there is no apparent
distinction of mobility classes. A visualization of typical clusters
of mobile head beads is shown in Fig. 8(b).

On the time scale t* when non-Gaussian displacements are
most pronounced (5 to 40 ms, depending on T; see Fig. 10(a)),
there is substantial clustering of beads, which we can quantify
by a correlation length
This journal is © The Royal Society of Chemistry 2014



Fig. 10 (a) The characteristic time t* from the non-Gaussian param-
eter a2(t) shown in Fig. 4b. (b) The corresponding characteristic size x

of mobile particle clusters, which grows on cooling below the Lo–Ld
phase transition.

Fig. 11 Themean cluster size hn(t)i of mobile lipids in the Lo phase as a
function of the observation window t. Clustering is most pronounced
on the same time scale that displacements are most non-Gaussian.
Clustering diminishes on the time scale of diffusive motion. The inset
shows the characteristic peak cluster size grows on cooling away from
the Lo–Ld phase transition.
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x2 ¼
2
X
s

s 2nðsÞRg
2ðsÞX

s

s 2nðsÞ ; (8)

where n(s) is the size of cluster s, and the radius of gyration

Rg
2ðsÞ ¼ 1

2N

X
i; j

�
ri � rj

	2
; (9)

where i and j denote particle indices within a cluster. The
correlation length x is the radius of clusters that give the
primary contribution to the second moment of the cluster size
distribution. Thus, x is characteristic of larger clusters, while
hRgi is more reective of smaller clusters when small clusters
predominate. Fig. 10(b) shows that x growsmodestly on cooling,
and lies in the range from 10 nm to 15 nm.

The important biological question is whether these domains
are related to collective motion and ra structures that aid
biological function in lipid membranes. Given the simplicity of
our model, and the lack of important components of living
membranes, we cannot unambiguously answer this question.
One concern about suggesting a connection with ras is that
the we observe clusters of enhanced mobility in a relatively
immobile background of the Lo phase, while ras are normally
envisioned to correspond to relative low mobility and ordered
molecules in island-like groupings surrounded by a more uid
background. This might render the comparison between the
structures we observe and ras moot, but it is worthwhile to
make some general observations on this important question.
This journal is © The Royal Society of Chemistry 2014
Ra domains should be a few protein diameters (10 nm to 100
nm) and have a minimum lifetime corresponding to a short
enzyme turnover time (order of ms) to be biologically signi-
cant.2 Our dynamical clusters indeed occur such size and time
scales (z10 ms and 10 nm, see Fig. 10), suggesting that this
intrinsic heterogeneity may help promote the organization of
complex ra structures in living membranes. Additionally, in
glass-forming systems, the appearance of clusters of high
mobility molecules is normally also accompanied by clusters of
low mobility molecules with similar size and time scales,51 and
we expect this feature to naturally arise in multicomponent
lipids where macroscopic crystal ordering is frustrated. The
absence of such low mobility clusters in this simple membrane
model may be an artifact of the model. The real test of the
possible relation between intrinsic dynamic heterogeneity and
ra-like structures requires the simulation of more realistic
multicomponent lipid membranes. That said, the single
component membrane is an important reference state for
comparison to the multicomponent lipid simulations.

We emphasize that our mobile lipid clusters are inherently
dynamic in nature, which we quantify by the dynamic equilib-
rium mean cluster mass hn(t)i as a function of the observation
window t; Fig. 11 shows hn(t)i for all T in the Lo phase. As
previously indicated, clustering is greatest on the time scale t*
where a2(t) is most pronounced. In contrast, at small t, where
motion is primarily vibrational, we do not expect signicant
clustering of mobility groups. In line with expectation, hn(t)i is
small for small t, and equal to the size of clusters that would be
formed simply by picking a fraction of beads f randomly.
Similarly, at long times t where motion is Brownian, there is
little clustering.

The observation the characteristic size of clusters grow on
cooling below the Lo–Ld transition is particularly germain to the
question of whether or not these clusters are connected with
phase transition phenomena. If the clusters were associated
Soft Matter, 2014, 10, 3036–3047 | 3043
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with the phase transition, they should grow approaching the
Lo–Ld phase transition. Instead, the clusters grow only on
cooling as we go away from the Lo–Ld phase transition. More-
over, the characteristic size of dynamic clusters is an equilib-
rium quantity, independent of the waiting time of observation.
In contrast, phase separation clusters progressively grow and
coarsen with waiting time. Our observation of growing
dynamical clusters on cooling is precisely in line with the
observations in glass-forming uids. Thus, the growth of these
clusters is apparently due to the increasing propensity for
collective motion as the thermal energy is reduced and
molecular packing becomes congested.

We next wish to provide physical insight into the factors
controlling the structure of these clusters. To do so, we quantify
the statistical geometry of clusters at time interval t* by the
fractal dimension df, dened by the scaling of cluster size

Rg � n1/df, (10)

Fig. 12(a) shows that at all T, df z 91/48 z 1.9. This value is
particularly signicant, since it matches the known fractal
dimension of near critical percolation clusters.52 Accordingly,
concepts from percolation theory and polymer physics may be
Fig. 12 (a) Mobile lipid radius of gyration Rg as a function of cluster
size, which determines the fractal dimension df. Different data sets
are different T. For 2D percolation clusters near the percolation
threshold, df ¼ 91/48,52 indicated by the bold line. Clusters are
examined for all T in the Lo phase at interval t*. (b) The distribution of
cluster sizes of mobile lipids. The functional from of P(n) comes from
percolation theory.52
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useful to understand cluster structure. Similarly, in a recent
study of a 3D glass-forming polymer melt, the fractal dimension
of highly mobile clusters was shown to approach that of
percolation clusters in 3D.51 Thus, there appears to be consis-
tency in the statistical geometry of these clusters across vastly
different systems.

If these clusters are indeed like those formed by a percola-
tion process, we expect that the cluster size distribution P(n) can
be described by a power law with an exponential cut-off, namely

P(n) � n�s exp(n/n0). (11)

In the case of 2D percolation near the transition, we expect s
¼ 187/91 z 2.05. Fig. 12(b) shows that P(n) does follow the
expected functional form, but that s z 1.75, a value smaller
than would be expected from ordinary percolation theory.

While the above analysis demonstrates that mobile head
beads are spatially correlated and form clusters similar to those
of percolation clusters, it does not answer the question of
whether the motion of these beads exhibits any kind of collec-
tive nature. Given the evident similarities to glass-forming
uids, we consider if the clusters can be further dissecting into
subgroups of particles that cooperatively replace each other, as
in glass-forming uids. To do so, we follow the established
procedure53 of building clusters of replacing beads within a
mobile lipid cluster. We refer to these as cooperatively rear-
ranging clusters (CRC). Clearly, the largest size of a CRC is
limited by the mobile lipid cluster size. Following ref. 53 two
mobile beads are in the same CRC if, over an interval t, one head
bead has replaced the other within a radius d¼ 0.6 s¼ 0.42 nm.
We have checked that the qualitative features of our ndings are
not affected by reasonable changes in the value d. A visualiza-
tion of the CRC within clusters of mobile head beads is shown
in Fig. 8(c). From this image, it is apparent that many of these
CRC groups form roughly co-linear regions, commonly referred
to as ‘strings’ in the context of glass-forming systems.53

Fig. 13 quanties the average number of lipid heads hLi in a
cooperatively rearranging cluster in the Lo phase as a function
Fig. 13 Mean size hL(t)i of the cooperatively replacing clusters (CRC).
The behavior is similar to the mean cluster size hn(t)i, but cooperative
subgroups are much smaller.

This journal is © The Royal Society of Chemistry 2014
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of the interval t, for all T studied. As in the formation of the
related mobile lipid clusters, there is no cooperativity on very
small time or very large time scales, but on the intermediate
scale where the mean motion is non-Gaussian and clusters
emerge, the size scale of replacing beads is largest. Not
surprisingly, these CRC are substantially smaller than the
mobile lipid clusters. Accordingly, percolation of these coop-
eratively rearranging clusters is rare, so that nite size affects
should not be an issue.

Parallel to our analysis of mobile particle clusters, we next
examine the statistical geometry of these CRC sub-groups. Since
these clusters are clearly not percolating, we would not expect
them to exhibit the same structure as clusters near the perco-
lation threshold. Instead, Fig. 14(a) shows that df z 1.56, a
value consistent with ‘lattice animals’ in 2D – i.e., percolation
clusters below the percolation threshold; this value may also
relate to ring polymeric structures, which suggests some non-
trivial topology of the CRCs, as we discuss below.

The cluster size distribution of lattice animals P(L) is pre-
dicted to follow a form similar to that of the percolation clus-
ters, namely,

P(L) � L�q exp(L/L0), (12)

where q ¼ 1 in 2D. Fig. 14(b) shows that the replacing particle
clusters indeed follow this functional form, but with q z �1.3.
The difference in the value of qmight be due to the fact that our
Fig. 14 Cooperatively replacing cluster radius of gyration Rg as a
function of its size L, which determines the fractal dimension df. For 2D
percolation clusters below the percolation threshold, df ¼ 1.56.52

Clusters are examined for all T in the Lo phase at interval t*. (b)
Distribution of cooperatively replacing cluster sizes L. The functional
from of P(L) comes from percolation theory.52
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clusters are only quasi-2D, and have some structure out of the
plane. In 3D, q ¼ 3/2 for lattice animals, so our results fall
between these 2D and 3D limits. Curiously, we do not see such
intermediate behavior for the fractal dimension. An alternate
possible explanation might be that these CRC are described by
strongly interacting ring polymers, which should have a rela-
tively collapsed structure, similar to percolation clusters under
conditions where strong excluded volume interactions cause
the collapse to rings. Indeed, CRC having the form of rings were
observed in the melting of crystals,34 which have a similar par-
titioning of mobility regions. Further work is required to better
understand the topological and geometric nature of these
clusters.

While the mobile lipid clusters and the CRC have many
features in common with their counterparts in glass-forming
liquids, there are notable differences. Qualitatively, the replac-
ing particles in glass-forming systems tend to have an open, co-
linear, string-like structure, similar to self-avoiding walks34,51 –
at least at temperatures where equilibrium simulations are
possible. Such string-like objects also appear here (Fig. 8), but
the CRC in the membrane typically have a more compact
structure. Quantitatively, this results in a fractal dimension
consistent with that of branched polymers (lattice animals),
rather than linear chain self-avoiding walks. Additionally, the
functional form of the CRC mass distribution P(L) differs
between the membrane and glass-forming systems. In the case
of glassy systems, P(L) is usually described by a pure exponen-
tial, characteristic of a linear ideal chain equilibrium polymer-
ization process. In the lipid membrane, P(L) is modied by a
power law (eqn (12), the form expected for equilibrium
assembly of ring polymers54). This is consistent with our
suggestion above that differences in the lipid membrane CRC
from those of glass-forming liquids arise from the possible
formation of ring-like exchange clusters. Presumably, the
contrasts between the membranes and glass-forming systems
derive from the different nature of thermodynamic transition
involved, and the near two-dimensionality of the lipid bilayer,
which has the effective of amplifying excluded volume interac-
tions within and between these dynamic polymeric structures.

V. Discussion and conclusion

Using a simple coarse-grained representation of the lipid
molecule intended to capture essential properties of a typical
lipid membrane, we have reproduced the qualitative thermo-
dynamic and structural features of the liquid-ordered and
disordered phases, and have examined the heterogeneity of
dynamics. Our ndings show that, within the Lo phase, there
exist two distinct mobility classes on a time scale when
displacements are non-Brownian (non-Gaussian) in nature.
Lipids with low mobility are locally caged by their neighbors,
and have a weak enhancement in their mean orientational
order. Conversely, mobile lipids have a diminished mean
orientational order, and tend to move by a replacement mech-
anism. Most signicantly, there is spontaneous segregation of
these groups into clusters, the characteristic size of which grow
on cooling away from the Lo–Ld phase transition. Thus, these
Soft Matter, 2014, 10, 3036–3047 | 3045
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dynamical clusters do not appear to be associated with the phase
transition, and instead share the same features observed in
liquids approaching a glass transition, commonly referred to as
dynamical heterogeneity. Moreover, the size (z10 nm) and time
scales (z10 ms) of these mobility domains are consistent with
those expected for lipid ra structures,2 raising the possibility
that such dynamical clustering plays an important role in the
formation of lipid ras associated with membrane transport.

At the same time, wemust point out that highlymobile groups
in an immobile background is inverted from the type of hetero-
geneity expected for lipid ras, which are believed to consist of
relatively low mobility clusters embedded in a more uid back-
ground. Such low mobility clusters are common in many glass-
forming systems,49,51 and also arise in superheated crystalline
materials34 and at the propagating interfaces of crystallization
and melting fronts of crystalline materials.35 Thus, the present
model is maybe insufficient to capture the correct nature of the
dynamical clustering and explain ra formation in living
membranes; nonetheless, it does provide a useful benchmark for
further studies. However, we would be surprised if multiple
component membranes studies did not exhibit a complementary
existence of high and lowmobility clusters. As a parallel example,
going from a single-component (crystallizing) Lennard-Jones
uid to a multi-component liquid that forms a glass yields just
such a coexistence of dynamical clusters. Accordingly, further
computational and experimental studies in this direction will be
valuable, and we look forward to simulating multicomponent
lipid membranes to test this hypothesis. This rather general
clustering phenomenon holds promise for helping to understand
the physical processes leading to the formation of ra-like clus-
ters and dynamical aspects of these structures. Investigations
along this line could also be fruitful in elucidating collective
dynamics of other biological materials.

Recalling our introduction, we offered a range of dynamical
properties that must be explained by any picture describing
membrane heterogeneity. First, regarding the question of
mobile and immobile lipid regions: clearly we can distinguish
such regions, and understand their origin via the same frame-
work as glass-forming uids. Since the membrane proteins are
bathed in these lipids, it is natural to also expect such hetero-
geneity in their motion. Moreover, such a bifurcation of
mobility states should naturally lead to highly intermittent, but
signicant jump-like motion for membrane proteins, as the
lipids vary between the mobile and immobile states. Second,
regarding cooperativity of themolecular motion: we have shown
how, within a mobile cluster of lipids, molecules move coop-
eratively via a collective replacement mechanism. This behavior
again mimics that of glass-forming uids. Our ndings did not
reveal any signicant topography features of the membrane,
and we have not examined effects of additives to membrane
dynamics. However, since we showed that immobile regions
tend to be slightly more ordered than mobile regions, we can
expect that additives that enhance lipid order will decrease
mobility locally, and vice versa for additives that reduce lipid
order. Recently, we considered such effects in the context of
nanoparticle additives to model glass-forming polymer
liquids,55,56 and we expect similar behavior for lipid membranes
3046 | Soft Matter, 2014, 10, 3036–3047
with protein ‘nanoparticles’. Thus, our picture of dynamical
clustering is able to account for many of the existing observa-
tions of membrane heterogeneity.

Our ndings for the dynamical heterogeneity of the
membrane share obvious similarities to the dynamics of glass-
forming liquids, which likewise exhibit dynamical heteroge-
neity,11,12,49 collective particle motion,53 as well as a strong of
sensitivity of the uidity to additives that inuence molecular
packing.55–61 Obviously lipid membranes are distinct from glass-
forming liquids, but the strong interparticle interactions and
disordered nature of both systems apparently lead to a similar
tendency for dynamical clustering and collective motion. Like-
wise, recent studies on the interfacial dynamics of nano-
particles,32 the melting and freezing of nanoparticles,33 the
melting of crystals,34 and the dynamics of grain boundaries35–37

have revealed similar dynamical features, further supporting
the possible universal nature of collective molecular motion in
strongly interacting condensed materials.

Given the similarity to the dynamical clustering and string-
like cooperativity of glass-forming liquids, it is possible that we
may be able to borrow ideas from that area to explain the
dynamical behavior of the Lo lipid phase. In particular, the
Adam–Gibbs model62 argues that the mean relaxation can be
directly related to the size of cooperative groups. In simulated
glass formers, the size of cooperative string motions has been
shown to quantitatively predict the T dependence of relaxa-
tion.51,55,56 Since we have evaluated the cooperative cluster size
in the Lo phase, we have also examined whether the diffusion
coefficient D can be quantitatively explained by the size of these
groups. While our data is broadly consistent with this possi-
bility, the range of D and L in the Lo phase is too limited to make
a conclusive test. Further examination of the parallels between
the dynamics of glass formation and lipid dynamics offers a
potentially productive line of future research.
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