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00185 Roma, Italy. E-mail: francesco.sciorti

Cite this: Soft Matter, 2014, 10, 9413

Received 18th August 2014
Accepted 23rd September 2014

DOI: 10.1039/c4sm01835d

www.rsc.org/softmatter

This journal is © The Royal Society of C
uid–liquid transition in a
tetrahedral fluid

Francis W. Starra and Francesco Sciortinob

For a model known to exhibit liquid–liquid transitions, we examine how varying the bond orientational

flexibility affects the stability of the liquid–liquid transition relative to that of the crystal phases. For very

rigidly oriented bonds, the crystal is favored over all amorphous phase transitions. We find that increasing

the bond flexibility decreases both the critical temperature Tc for liquid–liquid phase separation and the

melting temperature Tm. The effect of increasing flexibility is much stronger for melting, so that the

distance between Tc and Tm progressively reduces and inverts sign. Under these conditions, a “naked”

liquid–liquid critical point bulges out in the liquid phase and becomes accessible, without the possibility

of crystallization. These results confirm that a crystal-clear, liquid–liquid transition can occur as a

genuine, thermodynamically stable phenomenon for tetrahedral coordinated particles with flexible bond

orientation, but that such a transition is hidden by crystallization when bonds are highly directional.
1. Introduction

Molecules or particles with a dominant tetrahedral bonding
geometry are characterized by liquids in which substantial
empty spaces exist. The local coordination, around four, is
signicantly smaller than the typical coordination of simple
atomic uids, where about twelve neighbors surround each
atom, and consequently the packing fraction of tetrahedral
uids is typically z40% smaller. Similarly, the ordered phases
of tetrahedral particles are characterized by open crystals in
which all four bonds are formed. As in the liquid state, the
crystal density is signicantly lower (by around a factor of two or
more) than the body-centered (BCC) or face-centered (FCC)
crystal structures of typical atomic systems. In nature, water and
silicon are examples of substances in which empty liquid states
originate from the directionality of the tetrahedral inter-particle
interactions, and for which the open diamond structure
(respectively formed by the oxygen or silicon atoms) is the stable
crystal phase at ambient pressure.

It has been argued that the existence of empty spaces in
tetrahedral liquids opens the possibility of a liquid–liquid (LL)
phase transition in a pure, single-component system.1 The
possibility of LL phase transition in a pure substance was rst
proposed for water,2 and later-on extended to interpret the
behavior of several other atomic and molecular network form-
ing systems.3–5 A LL transition has been directly observed in
phosphorus6 and cerium.7 For network uids, the LL transition
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is characterized by the emergence, at low temperature, of liquid
states with two distinct structures, differing in their local
density, which drives phase separation; the two liquids are
commonly referred to as low-density liquid (LDL) and high-
density (HDL) liquid. There have been many attempts to
understand the underlying interactions required to realize such
a transition. For the case of isotropic particle interactions, the
presence of two distinct length and energy scales in the inter-
particle potential can theoretically give rise to a LL transition.8,9

In contrast, for the case of tetrahedral directional interactions,
the symmetry between the structure of occupied and empty
space readily theoretically allows repeated network struc-
tures.1,10,11 More specically, the low density phase consists of a
single network of tetrahedrally coordinated particles, while the
high density phase is characterized by partial interpenetration
of two local tetrahedral networks (i.e. a second local tetrahedral
network occupying the unoccupied space of the rst network).
Under these conditions, two distinct second-order critical
points (gas–liquid and liquid–liquid) are present in the phase
diagram of the system. Directionality can also arise in binary
systems with isotropic interactions, such as silica, due to size
asymmetry and electrostatics.12

The interpenetration mechanism that leads to a liquid–
liquid transition has been numerically investigated in detail for
DNA-functionalized nanoparticles, a colloidal analog of tetra-
hedral molecules.1,11,13,14 Indeed, a variety of techniques to
create colloids or nanoparticles with customizable interactions
have been developed over the past 20 years.15,16 These ‘designer
atoms’ can potentially control both the number of links, or
valence, as well as the bonding distance, relative to the core size.
As a consequence, the phase behavior of these systems can
include a number of interesting features, including ‘empty
Soft Matter, 2014, 10, 9413–9422 | 9413
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liquids’,17,18 micellar and other cluster phases.19,20 In particular,
the possibility of thermodynamically distinct amorphous states
from a single component system has garnered much attention,
since – as we have alluded to above – it may help to explain the
unusual behavior of important natural liquids, like water and
silica. Of the various approaches for creating designer atoms,
tethering of DNA to the nanoparticle (NP) core is particularly
attractive, as the bonding specicity and relative rigidity of
double-stranded (ds) DNA allow for ‘lock-and-key’ linkages with
a highly variable range.21–24

For the case of small NP units decorated with DNA with
tetrahedral symmetry, we have previously developed a coarse-
grained molecular model to investigate their phase behavior
and structure, and their assembly into large-scale amorphous
networks.13,25–27 In this case, four single-stranded (ss) palin-
dromic DNA strands are attached to a small core NP to provide a
clean model for tetrahedral particles with limited valence.
Network assembly occurs by the hybridization of dsDNA to
connect NP. Due to base pair selectivity, each strand can
participate in only one dsDNA ‘bond’ with a neighboring NP,
eliminating possible complications of multiple or shared
bonding situations. Distinct from atomic systems, these parti-
cles can interpenetrate without signicant energy costs due to
the small core size relative to the DNA length, emphasizing the
role of the empty space in the bonded network. Fig. 1 shows an
example of the model particles and their ability to interpene-
trate at high density. The resulting model incorporates a high
degree of tetrahedrality by design, and displays clear liquid–
liquid transitions associated with the interpenetration of locally
distinct networks.1,11

Previous studies on the liquid–liquid transition generally
either found that the critical point is metastable with respect to
the crystal phase, as expected for water,2,28–31 or did not evaluate
the relative stability of the liquid and crystal states. The
importance of this non-equilibrium condition to the LL tran-
sition and of the nite lifetime of the liquid state has mostly
escaped discussion. Only recently have such topics come into
play,32–38 and a number of studies have examined the possible
interference between the liquid–liquid transition and crystalli-
zation. To understand this interference, one must consider how
the intermolecular interactions differently affect crystal forma-
tion and the LL transition. In the case of crystallization, the
Fig. 1 Snapshot of molecules in (a) the low-density liquid (LDL) and (b)
the high-density liquid (HDL). In each case, we select two nearby NPs
which are not directly bonded, and draw the four neighbors to which
they are bonded. For LDL, the resulting combined network is fully
connected. For HDL, a higher density is achieved by interpenetration
of the two locally bonded clusters.
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quest for a self-assembled photonic colloidal diamond crystal39

has stimulated the investigation of the mechanisms underlying
crystallization in tetrahedral crystals.40,41 Simple models where
the bond orientational exibility can be varied have shown that
crystallization of open structures (the equivalent of hexagonal
and cubic ice) is strongly favored by directional bonds.40

Furthermore, it has been discovered that very exible bonds
destabilize the open crystal structure so much that the liquid
phase may remain thermodynamically stable (lower free energy
than the crystal) down to zero temperature for a wide region of
densities.42–44 Networks of DNA tetravalent particles possibly
provide an example of highly exible particles that never crys-
tallize.45 The impact of exibility on the LL transition is
comparatively less well studied.

The role of the orientational bond exibility in the liquid–
liquid transition has been recently investigated in an ideal
model of colloidal tetrahedral molecules,46 and these results
suggest that bond exibility affects crystallization and the
liquid–liquid transition differently. For highly directional
bonds, crystallization is dominant and the liquid–liquid tran-
sition is deeply metastable (if not pre-empted by the sponta-
neous formation of crystal seeds). On increasing the bond
exibility, the liquid–liquid critical temperature approaches the
crystallization temperature and then ‘pops-up’ above the
melting temperature as a thermodynamically stable phenom-
enon. Further increasing the bond exibility increasingly
destabilizes the crystal relative to the liquid. Thus, it is possible
to select a range of bond exibility where the low and high
density liquids are the thermodynamically stable phases, down
to rather small temperatures. We refer to this scenario as a
“naked”, or “crystal-clear” liquid–liquid transition.46,47

The coarse-grained NP-DNA model is a perfect candidate for
testing these ideas in a more realistic model. Indeed, the model
has already a parametric dependence on the width s of the
bonding angle potential.25 Here we examine how s (and hence
bond orientational exibility) affects the stability of both the
liquid–liquid transition and the competing diamond (DC) and
BCC lattice structures. We nd that the thermal stability of
crystal (measured by the equilibrium melting temperature Tm)
and of liquid–liquid phase separation (measured by the critical
temperature Tc) is reduced on increasing s. However, the effect
of changing s is far more dramatic for Tm than for Tc. Conse-
quently, for very narrow bonding angle widths, the LL phase
transition is metastable with respect to the crystal, but the LL
transition becomes stable with respect to the crystal at a larger
bonding width, demonstrating that such a transition is ther-
modynamically plausible, and not related to any artifacts that
might arise due to metastability to a crystal phase. These
general ndings are similar to those reported in ref. 46, but we
emphasize several distinct aspects. First, by examining a model
system tethered by DNA-like linkages, we consider a vastly
different scale for the range of attraction relative to the core size
of the colloidal units. This is also a system that is within the
grasp of current experiments. More importantly, the soness of
core interactions and the angular variation of bonding inter-
actions introduce an energy gap between low and high density
states that is absent in the model of ref. 46. This energy
This journal is © The Royal Society of Chemistry 2014
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difference plays a vital role in controlling the slope of the
liquid–liquid transition, resulting in a phase diagram more like
that expected in the case of water.

2. Coarse-grained model

We studied the previously proposed effective potential model
for particles comprised of four single strands (ss) of DNA teth-
ered to a nanoparticle hub in a tetrahedral orientation.13,14,27

The effective bonding potential between two ssDNA arms
parameterizes the interactions as a function only of the sepa-
ration of the two nanoparticle cores and of the relative angular
orientation, dened by the position of the DNA arms. An
additional lock-and-key condition is imposed to mimic the
bond selectivity such that each arm combines with only one
other ssDNA, effectively imposing the limited valence condition
(maximum number of bonded neighbors equal to four). This
parameterized potential quantitatively reproduces the structure
and phase behavior of the more complex model of NP func-
tionalized with four ssDNA in a tetrahedral orientation.25 See
ref. 25 for a complete description of the effective potential.

The orientational component of the effective potential is
dened by the angular distribution hq(q) (where q is the angle
between the line connecting the centers of two interacting
particles and the direction of the tethered DNA strand), which is
described by a Gaussian function, i.e.

hqðqÞ ¼ Affiffiffiffiffiffiffiffiffiffiffi
2ps2

p exp

�
� q2

2s2

�
; (1)

where A is a normalization constant11 and s is the standard
deviation. Thus, varying s allows us to vary the bond orienta-
tional exibility. The larger the variance, the wider is the
librational motion of the bonded particles. Previous studies1,11

of the model focused on the single value s ¼ 0.052 rad2,z1/20.
Here, we consider a range of values 1/7 # s2 # 1/32, where the
liquid–liquid transition is accessible on reasonable computa-
tional time scales.

We present our results in the reduced units dened by the
effective potential.13,25 In this case, energies (and thus temper-
ature) are determined relative to the binding energy of a single
base pair, lengths are in units of base-pair separation within the
ssDNA, and the mass is in units of nucleotide mass. Since the
model is not intended to be a quantitative representative of the
chemical details of DNA, we do not attempt to parameterize the
more subtle effects arising from differences in base binding
energy (A–T versus C–G) or sequence dependent variations.

3. Simulation methods
3.1. Phase diagram of the amorphous phases

To study the phase diagrams of the amorphous phases, we
implement the successive umbrella sampling (SUS) method,48

which requires that we evaluate the probability distribution
pmVT(N) that a system at given temperature T and chemical
potential m in a volume V contains exactly N particles. Having
obtained a very accurate numerical representation of pmVT(N)
(and hence of the density distribution pmVT(r), where r¼N/V) for
This journal is © The Royal Society of Chemistry 2014
a given m, it is possible to evaluate pm0VT(N) for any other m0 using
the method of histogram reweighting. Formally,

pm0VT ðNÞ ¼ pmVT ðNÞebðm0�mÞNℨmVT

ℨm0VT
(2)

where b ¼ 1/kBT and ZmVT is the grand-canonical partition
function. While ZmVT is not explicitly known, the necessary ratio

is xed simply by the normalization condition
X
N

pmVT ðNÞ ¼ 1.

Finally, the coexistence between different phases is identied by
determining the value of m0 for which pm0VT(N) exhibits two
distinct peaks with an equal area. The mean density of each of
these peaks denes the density of the coexisting phases. To
simplify the notation, in the remaining text we will drop the
subscript mVT and indicate the probability only by p(N).

The challenge of the SUS method is the accurate evaluation
of p(N). To do so, the range of values 0 < N < Nmax under
consideration is divided into Nmax overlapping intervals i such
that N ˛ [Ni, Ni + 1]. In each window a ‘restricted’ grand-
canonical Monte-Carlo (GCMC) simulation is performed,
rejecting moves that would insert or delete a particle outside the
range. From each simulation, one calculates how oen a state
with Ni particles is visited relative to the state with Ni + 1,
providing the probability ratio p(Ni)/p(Ni + 1). By combining the
data in the overlapping windows from the Nmax simulations and
enforcing normalization, the complete probability distribution
p(N) is constructed.

The advantages of using this method are the possibility to
sample all microstates without any biasing function and the
relative simplicity to parallelize the run, with the speed gain
scaling linearly with the number of processors. For the specic
system we study, we use a cubic box of length L ¼ 55, and the m
value varies with T; the specic value of m is usually not critical,
since histogram reweighting is used to reconstruct the p(N) data
for a broad range of m values. To sample the range of densities
relevant to the liquid–gas and liquid–liquid transition for
the chosen L, we perform restricted GCMC simulations with
N ˛ [Ni, Ni + 1] over the range Ni ¼ 0 to Ni ¼ 299 molecules for
each temperature studied. In other words, for each T and s we
consider, we perform 300 simulations with overlapping inter-
vals of one bin. Considering the number of temperatures and s

values studied, we present results from around twenty thousand
individual simulations; fortunately modest cluster computing
facilities make this task manageable. Note that, in general, the
method can also be extended to enable reweighting to different
T values, provided that the combined probability p(N, E) (where
E is the energy) is adequately sampled.

The knowledge of p(N) from N ¼ 0 onward makes it possible
also to evaluate the equation of state of the model (parametric
in m), via the relation for the pressure49

PðT ;VÞ ¼ � kBT

V
ln pð0Þ (3)

combined with

rðT ;VÞ ¼
X
N

NpðNÞ=V (4)
Soft Matter, 2014, 10, 9413–9422 | 9415



Fig. 3 Example of the identification of the melting temperature Tm for
thediamondandBCC lattices fors¼ 1/32. The amplitudeof theprimary
peak q1 of the structure factor S(q1) has an essentially discontinuous
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where p(0) is the probability for N ¼ 0 molecules at a given
(m, V, T), which is obtained from the histogram reweighted
data.

To provide a clearer picture of the process by which our data
are obtained, we show an example of p(N) for bonding width s2

¼ 1/16, at T ¼ 0.0910 and m/kT ¼ �13.2 in Fig. 2(a), which is
below the critical temperature for both liquid–gas and liquid–
liquid phase separation. The SUS method enables us to obtain
data for p(N) that effectively samples an enormous range of
probabilities, here spanning 50 orders of magnitude. It is this
extreme accuracy that allows for reweighting p(N) to a broad
range of m values, including at coexistence, as shown in
Fig. 2(b). We identify the m value for coexistence of the phases by
nding the reweighting that yields two distinct peaks of equal
areas. Accordingly, we can evaluate the mean densities of these
coexisting phases, which generates the T–r phase diagram.
dropuponmeltingof the crystal, allowingus tonarrow the range forTm.
The insets show the full structure factorsS(q) fromwhich thefirst peak is
extracted. For each crystal, we show S(q) immediately below (green or
blue) and above (in black) Tm. The small symbols in the insets mark the
expectedBraggpeak locations for ideal diamondor BCCorganizations.
We obtain similar data for all other s studied.
3.2. Melting loci of crystal phases

In addition to the disordered phases, it is important to identify
the equilibrium melting loci of the relevant open crystals, dia-
mond and BCC. We calculate the melting temperature of crystal
phases using the ‘interface’method, in which a crystal is placed
Fig. 2 (a) Example of the distribution p(N) of molecular occupancy for
s2¼ 1/16, at T¼ 0.0910 and m/kT¼�13.2, on a logarithmic scale (black
line). Note that the scale of p(N) covers 50 orders of magnitude,
enabling reweighting over a large range of m. The data are reweighted
according to eqn (2) to generate p(N) for the liquid–gas (red) and
liquid–liquid (green) coexistences. (b) The distributions p(N) for the
liquid–gas and liquid–liquid coexistence on a linear scale to more
readily identify the two coexisting phases.
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in contact with the uid at a xed temperature and pressure (see
Section 8.1.4 of ref. 50). In this case, we place an ideal diamond
or a BCC crystal in contact with an amorphous uid phase with
similar density. The crystal region consists of 512 molecules for
the case of the diamond lattice, and 432 molecules for the BCC
lattice; the corresponding number of molecules are used in the
uid phase, resulting in a simulation cell that is roughly twice
as long in the direction normal to the uid–crystal interface.
Box dimensions parallel and perpendicular to the interface vary
independently to relax any potential stress on the crystal phase.
The interface in this case is unstable, so that the system will
progress toward either an entirely crystal or an entirely uid
state.

We identify melting by the disappearance of the Bragg peaks
in S(q), as illustrated by Fig. 3 at one example pressure for both
the diamond and BCC systems. Note that the connectivity of the
BCC crystal in this case is that of two distinct, interpenetrating
diamond lattices. To map out the melting loci Tm in the region
of interest, we study many P for each T. Our results for the
precise location of Tm are limited to T > 0.090. For lower T the
kinetics of the crystal–uid interface become too slow for a
precise estimate. In these cases, we are able to place upper
bounds on Tm by the lowest T at which melting is clearly
observed.

4. Results and discussion

We now examine how changing the bond orientational exi-
bility (s2) of the potential affects the liquid–liquid phase tran-
sition and its stability relative to the crystal phases.

Fig. 4 shows the phase diagram of the three amorphous
phases – gas, low-density liquid (LDL), and high-density liquid
(HDL) – as well as the diamond and BCC crystals in the T–r
plane for six values of the variance s2 of the angular potential.
This journal is © The Royal Society of Chemistry 2014



Fig. 4 T–r phase diagram for various bond orientational flexibility values s2. The density is scaled by the bonding distance d3 to facilitate
comparison with the diamond lattice rd. The black circles indicate the bounds of the phase coexistence of the amorphous phases (gas, LDL, and
HDL). The dotted black lines estimate the upper bound of the coexistence region. The blue diamonds bound the thermodynamically stable,
single-phase region for the diamond lattice (rd3/rd ¼ 1), and the green squares indicate the stability region of the BCC lattice (rd3/rd ¼ 2). These
regions are extremely narrow in density, so that they appear as nearly vertical lines in this representation. The blue (diamond lattice) and green
(BCC lattice) lines indicate the crystal–fluid coexistence boundaries; the lines are solid for the coexistence with a stable crystal, and dashed for
the coexistence with ametastable crystal. Thus, in panels (a) and (b), the combined solid blue and green lines indicate the region where a crystal is
in the thermodynamically stable state. The red triangles indicate the locus of temperature of maximum density (TMD) of the amorphous phase.
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For convenience, we plot density r ¼ N/V scaled by the most
probable separation d of a bonded neighbor and the density rd
for a diamond lattice with unit lattice spacing. Using this
scaling, rd3/rd ¼ 1 corresponds to the density for a diamond
(cubic or hexagonal) lattice; similarly, rd3/rd ¼ 2 corresponds to
BCC density (two interpenetrating diamond lattices).

For all s2 values shown, we observe a liquid–liquid transi-
tion, in addition to the standard gas–liquid transition. For the
liquid–gas transition, Tc is essentially independent of s

2 and the
liquid phase coexisting with the gas has always a density
approaching rd3/rd z 1, indicating the predominance of local
tetrahedral order. In contrast, the Tc of the liquid–liquid tran-
sition decreases with s2, suggesting that bond directionality
favors the liquid–liquid phase separation. This second phase
transition involves a locally tetrahedral low-density (rd3/rd z 1)
and an interpenetrating high-density phase (rd3/rd z 2). The
s value previously discussed in ref. 1 is intermediate to the
s2 ¼ 1/16 and 1/24 cases.

Like Tc for the LL critical point, the Tm of crystal phases is
also very sensitive to s2. The highest T at which the crystals are
thermodynamically stable quickly drops with increasing s2,
conrming the previous nding40,42 that the stability of the
crystals is strongly affected by bond exibility. This can be
understood from the fact that larger exibility allows a large
This journal is © The Royal Society of Chemistry 2014
variety of fully bonded states that are disordered. These disor-
dered states will have nearly the same energy as the ordered
state, but larger entropy, and hence lower free energy.

It is interesting to observe that, for highly directional bonds
(s2 ( 1/24), the crystal states are so strongly favored that the
upper bound of melting for both DC and BCC lattices exceeds
the critical temperature of even the gas–liquid transition.
Consequently, both the gas–liquid and liquid–liquid transitions
are metastable with respect to the crystal (Fig. 4(a and b)). For
these very directed, inexible linkages, the thermodynamically
stable phase diagram consists of only crystal phases and a
super-critical uid. On increasing exibility, the destabilization
of the crystal results in the gas–liquid transition becoming
thermodynamically stable. This is reminiscent of the appear-
ance of the gas–liquid transition as a stable phase in isotropic
colloids, when the range of interaction increases beyondz25%
of the particle size,51,52 a phenomenon conrmed also for
directional interactions.53,54 In this respect, large bond exibility
acts as an effectively increased interaction range.

Both the liquid–liquid transition and the crystallization
transition are thus signicantly affected by bond exibility. Still,
the rate at which the two phenomena is sensitive to s2 appears
to be different. As a consequence, for s2 T 1/16, the LL critical
point becomes thermodynamically stable with respect to the
Soft Matter, 2014, 10, 9413–9422 | 9417
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crystal. For s2 $ 1/12, the crystallization kinetics become
extremely slow, preventing us from accurately determining the
complete crystal melting locus. However, in all cases we conrm
(again using the interface method) that both diamond and BCC
crystals melt at Pc for T signicantly below Tc for the liquid–
liquid critical point, so that the stability of the LL critical point
is assured.

To better grasp the competition between the crystal phases
and the LL transition, as well as to understand the relationship
to the anomalies of water-like systems, we construct the T–P
representation of the phase diagram. Fig. 5 shows the resulting
T–P diagram for the same s2 values shown in the T–r diagrams.
The relative crystal stabilities and the crossover from meta-
stability to stability of the LL transition are best illustrated by
Fig. 6, which shows the Tc of the LL transition and Tm of the
diamond and BCC crystals at the critical pressure Pc for the LL
transition, as bond exibility s is increased. The graph indi-
cates, along a thermodynamic isobaric path at Pc, the sequence
of phenomena (LL critical point or DC or BCC crystallization)
that are encountered on cooling. For very rigid bonds, the BCC
has a larger Tm at Pc and hence it is a more stable phase.
Fig. 5 T–P phase diagram for various bond orientational flexibility values
to the crystals. The melting locus for the diamond lattice is shown by t
interpolate between points, and indicate melting of a stable crystal. T
metastable to another crystal. For s2 > 1/16, we cannot accurately evaluate
the LL transition. Also note that the LL coexistence line generally has a
simple models exhibiting a liquid–liquid transition. The red triangles in
amorphous phase.

9418 | Soft Matter, 2014, 10, 9413–9422
However, since Tm for the BCC lattice decreases more rapidly
with increasing s than for the diamond lattice, the diamond
lattice becomes a more stable crystal at Pc for s

2 > 1/24. Finally,
at s2 z 1/16 the liquid–liquid critical point bulges out and
becomes thermodynamically accessible from the liquid side.
On further increasing s2 BCC and DC melting T decreases so
quickly that the LL remains the only accessible thermodynamic
phenomenon, so that crystallization cannot interfere with the
“crystal clear” liquid–liquid transition.

The T–P representation is also helpful to quantify water-like
anomalies. In particular, Fig. 5 shows the line of isobaric
density maxima, or temperature of maximum density (TMD),
for the model at each s2 considered. We observe that the locus
of density maxima ‘retrace’ with pressure. The same curves are
also shown for completeness in the T–r plane in Fig. 4. In the
case of water, the possible presence of a liquid–liquid transition
is likely intimately connected with the many anomalous prop-
erties of water. In particular, the presence of the density
anomaly in water demands that entropy and volume changes
are negatively correlated; in the context of the Clausius–Cla-
peyron relation, this usually leads to coexistence lines in the
s2. For s2 < 1/16, the liquid–liquid transition is metastable with respect
he blue diamonds and for BCC by the green squares. The solid lines
he dashed lines indicate melting of the crystal, where the melting is
themelting locus, but confirm that crystals melt well below Tc at Pc for

negative slope, a feature expected for water, but not present in many
dicate the locus of temperature of maximum density (TMD) of the

This journal is © The Royal Society of Chemistry 2014



Fig. 7 Potential energy as a function of density for (a) s2 ¼ 1/24, (b)
s2 ¼ 1/16, and (c) s2 ¼ 1/8. For each bond flexibility, we show three
temperatures near Tc for the liquid–liquid phase separation.
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anomalous region of the T–P plane that are negatively sloped
(strictly speaking, a negatively sloped coexistence line can exist
without a density anomaly). For example, the liquid–ice Ih
melting line is negatively sloped just below the TMD, in contrast
to normal liquids. Similarly, the LDL–HDL coexistence line, if it
does exist in water, is also expected to be negatively sloped.
Curiously, many simple, spherically symmetric models that
exhibit a liquid–liquid transition do not share the negative
slope in T–P of the LDL–HDL line. In contrast, the present
model does exhibit negatively sloped LDL–HDL and diamond–
liquid coexistence lines. A positive slope was also observed in
the modied tetrahedral patch Kern–Frenkel model – which
also exhibits a stable LL transition.46 An important difference
between that model and the one we study is that the energy for
all bonded orientations is identical for the patchy particle
model, while here there is an energy penalty as the orientation
deviates from the preferred direction, as well as when particles
change their relative distance. Consequently, in the patchy
model, the energy of the two fully bonded networks (BCC) is
identical to a single network (DC). Consideration of the energy
cost of interpenetration, either due to the orientational depen-
dence of the bonding energy55 or due to the generic repulsive
contribution, may be an important feature to reproduce a
negatively sloped LDL–HDL transition line in the phase
diagram.

To clarify the energetic origin of the LL transition, we
investigate the density dependence of the potential energy for T
close to Tc. Fig. 7 shows the potential energy for three s values at
temperatures above, at, and below the Tc for liquid–liquid phase
separation. The data, originating from the SUS simulations,
cover the entire range of densities, from the gas phase to the
high-density liquid phase, including the coexistence regions.
The energy in the unstable region of density depends on the
extent of the interface between gas and liquid or between the
LDL and HDL phases, and is reported here only for
Fig. 6 Relative stability of crystal and amorphous states as a function
of bond orientational flexibility. As the variance s2 for the bond angle
potential grows, Tc and Tm (evaluated at Pc) decrease. However, the Tm
for crystals decreases significantly more rapidly than Tc of the LL
transition, opening a window in the phase diagram (shaded aqua)
where thermodynamically stable liquid–liquid coexistence occurs
without the intervention of crystallization.

This journal is © The Royal Society of Chemistry 2014
completeness. For relatively stiff bonds (s2 ¼ 1/24), minima in
the potential energy are apparent near rd3/rd z 1 and rd3/rd z
2, which are better resolved on cooling. For all s, the depth
energy minimum of the single networked phase (low density,
rd3/rd z 1) is noticeably greater than that of the high-density
phase. However, as bonds become more exible (increasing s),
the energy minimum for the high-density phase becomes
difficult to distinguish. The presence of two minima in the
density dependence of the potential energy expresses the strong
coupling between local density and bonding induced by the
directionality of the interaction. When the average distance
between the particles coincides with the possibility of forming
one full network (the so-called optimal density) or two inter-
penetrating networks, then the energy is low. When the average
distance between the particles does not match the network
values, then – in order to maximize the number of bonds – the
system prefers to separate into two phases with optimal network
densities.

To put our ndings in the context of other tetrahedrally
coordinated uids, we examine how the order of our system
varies as we change the bonding exibility. More specically,
ref. 56 found that the data for a broad range of tetrahedral uids
can be organized around the parametric variation of the “pre-
peak” in the structure factor S(q) relative to the angle f dened
by the connection between three bonded neighbors. Accord-
ingly, in Fig. 8 we show S(q) and the distribution P(f) for various
s2 at the ideal density rd3/rd ¼ 1; data are shown at the critical
Soft Matter, 2014, 10, 9413–9422 | 9419



Fig. 8 Structure of the fluid at the critical temperature Tc for LL phase
separation at the ideal tetrahedral density rd3/rd ¼ 1, quantified by (a)
the structure factor S(q) and (b) the distribution P(f) of the angle f

defined by three bonded neighbors.
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temperature Tc(s) to simplify comparison. For rigid bonds
(small s2), S(q) displays a prominent pre-peak at q1 z 0.5,
indicative of the tetrahedral organization. As the bond exibility
Fig. 9 Universal description of the structure of tetrahedral fluids, given
by the variation of the pre-peak S(q1) with the inverse of the peak in
P(fmax). Data for the present study are shown by orange diamonds, at
rd3/rd ¼ 1 and Tc for LL phase separation. From left to right, the s2

values for these points are 1/12, 1/16, and 1/24. The data for the other
systems were taken from ref. 56.
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increases, this pre-peak shrinks, and the pre-peak is not readily
identiable for s2 > 1/12, indicating the growing distortion of
the network. Correspondingly, the angle distribution P(f)
broadens as the bond exibility increases, and the amplitude
P(fmax) of the peak location fmax decreases. These changes are
not independent, and we see the explicit relation in Fig. 9,
where we plot the amplitude of the pre-peak S(q1) as a function
of 1/P(fmax), along with data for a collection of other tetrahedral
uids. These data demonstrate the underlying similarity of
these uids. Moreover, this provides some guidance as to in
which cases we might expect a possible stable liquid–liquid
transition. Specically, using the fact that the LL transition
is thermodynamically stable for s2 T 1/8, we expect that for
S(q1) ( 0.9 and P(fmax) ( 0.02 (at Tc and the diamond density
rd3/rd¼ 1), the LL transition will be stable relative to the crystal.
5. Conclusions

We have investigated the interplay between crystallization and
the liquid–liquid transition in a model for limited valence
particles composed of four single-stranded DNA graed on a
central core in a tetrahedral arrangement. We have tuned the
orientational exibility of the bonds to investigate its role on
both the liquid–liquid transition and crystal formation.
Consistent with predictions based on primitive models of
tetrahedrally coordinated particles,40,42 we have found that bond
directionality controls the thermodynamic stability of the
crystal. On increasing exibility, the melting temperature
decreases, stabilizing the liquid state. As a result, the liquid–
liquid transition emerges from metastability. Under these
conditions, the critical point and the phase separation process
becomes “crystal clear”47 and can be approached without the
fear of originating crystal seeds. Our work thus shows that,
when there is no stable crystal, the liquid–liquid transition can
not be mistaken as a failed crystallization.32

Our results provide further evidence that, for tetrahedrally
coordinated particles, the liquid–liquid transition is a genuine
phenomenon, even if commonly hidden by crystallization. This
observation holds not only for colloidal tetrahedral particles but
apparently also for their atomic and molecular counterparts,
including water, silica, silicon, and carbon to name a few. The
delicate interplay of soness (controlling the ability to inter-
penetrate) and bond directionality dictate the relative distance
between the melting and the critical point, and hence the
possibility to approach the liquid–liquid critical point without
the interference of crystallization. The present study conrms46

that systems with highly directional bonds (as in silicon and
water56) are prone to crystallization. Our ndings suggest that in
such a case, a liquid–liquid critical point is present, but hidden
in the metastable region. While the metastable region is
sometimes accessible to careful experiments, rapid crystalliza-
tion typically makes much of this region practically inaccessible
– and thus oen termed “no-man’s land”. Even if the critical
point cannot be accessed experimentally, its presence affects
regions of temperatures and pressures where the liquid state is
stable.28,29,57
This journal is © The Royal Society of Chemistry 2014
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Finally, our results provide a possible route to experimentally
design a colloidal system to mimic water-like behavior. Micron-
size colloidal particles with specic directionality have been
recently synthesized58 and offer an alternative to DNA-graed
nanoparticles or DNA nano-constructs.59 A colloidal model for
water where the width of the no-man’s land can be controlled
and the liquid–liquid transition can be exposed is hopefully
soon within reach.
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