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ABSTRACT
We examine the instantaneous normal mode spectrum of model metallic and polymeric glass-forming liquids. We focus on the localized
modes in the unstable part of the spectrum [unstable localized (UL) modes] and find that the particles making the dominant contribution to
the participation ratio form clusters that grow upon cooling in a fashion similar to the dynamical heterogeneity in glass-forming fluids, i.e.,
highly mobile (or immobile) particles form clusters that grow upon cooling; however, a comparison of the UL mode clusters to the mobile
and immobile particle clusters indicates that they are distinct entities. We also show that the cluster size provides an alternate method to
distinguish localized and delocalized modes, offering a significant practical advantage over the finite-size scaling approach. We examine the
trajectories of particles contributing most to the UL modes and find that they have a slightly enhanced mobility compared to the average, and
we determine a characteristic time quantifying the persistence time of this excess mobility. This time scale is proportional to the structural
relaxation time τα of the fluid, consistent with a prediction by Zwanzig [Phys. Rev. 156, 190 (1967)] for the lifetime of collective excitations in
cooled liquids. Evidently, these collective excitations serve to facilitate relaxation but do not actually participate in the motion associated with
barrier crossing events governing activated transport. They also serve as a possible concrete realization of the “facilitation” clusters postulated
in previous modeling of glass-forming liquids.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5127821., s

I. INTRODUCTION

Because of the quasi-solid nature of glass-forming fluids, it has
long been attractive to consider whether theoretical approaches used
to describe the dynamics of crystalline solids could be adapted to
understand the dynamics of glass-forming liquids. Formally, the
normal modes of crystalline materials are quantified by the local
curvature of the potential energy surface (PES) in the vicinity of
the potential minimum, defining the crystalline solid state at zero
temperature, where a harmonic approximation is commonly a good
approximation. In contrast, liquids and crystals (at elevated temper-
atures approaching the melting temperature Tm) are able to explore

a much more complex PES. These systems can sample many min-
ima and saddle points, connecting them so that extending the nor-
mal mode approach from ideal crystalline solids to real materials
requires the incorporation of features of the local PES curvature
from all regions explored by the material. Specifically, there are a
significant number of directions in which the local curvature of the
PES is negative in liquids and heated crystals, so many real materi-
als exhibit a relatively “chaotic” dynamics not constrained to reside
near the vicinity of potential energy minima. These local curvatures
define the “instantaneous normal modes” (INMs) of the material,1–3

and below, we confine our attention to liquids in which the mate-
rial system spends an appreciable time in the vicinity of both saddle
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points and minima of the PES. There have been many attempts
to develop a formal theory of liquid dynamics based on the INM
approach, but quantitatively predictive results have generally been
restricted to time scales on the order of local vibrational motions
(i.e., picoseconds).4–8

On the other hand, there has been progress in developing a
formal theory for liquid diffusion based on a subset of the INM
spectrum.9,10 The directions of negative curvature are commonly
referred to as “unstable” modes, since they lead away from local min-
ima, and correspondingly, these modes are naturally supposed to be
related to diffusion in the liquid.11 That said, the negative curvatures
can also arise from anharmonicities of the PES, and so only a frac-
tion of the unstable modes contributes significantly to diffusion and
relaxation.2,12,13 Many early efforts attempted to “separate the wheat
from the chaff” or, in other words, to identify those unstable modes
that relate specifically to diffusion. In particular, there has been
focus on the unstable modes that connect different local minima
in configurational space (double-well modes).14–21 Alternatively,
Bembenek and Laird2,13 proposed the method of filtering the unsta-
ble modes by examining the fraction of the system participating in
the mode and argued that only those unstable modes that are delo-
calized (all particles participating) relate to diffusion, while localized
modes (in which only a fraction participates significantly) are not
relevant for diffusion. One significant challenge in pursuing this
proposal has been the unambiguous separation of modes into local-
ized and delocalized categories,2,13,22,23 a problem which was recently
solved11 by drawing upon ideas developed to quantify Andersen
localization in classical dynamical systems based on random matrix
theory.24

The proposal that diffusion is controlled mainly by unstable
delocalized (UD) modes does not address the fact that glass-forming
liquids are “dynamically heterogeneous,”25–28 suggesting that local-
ized unstable modes might play an important role in relaxation and
diffusion, at least at low temperatures. In particular, simulations
have indicated that molecules or segments of molecules within the
fluid form long-lived clusters of relatively low or high mobility and
mobile particle clusters can be further decomposed into string-like
replacement motion, the size of which appears to govern relax-
ation processes in cooled liquids.29–32 Both high and low mobility
clusters grow upon cooling toward the glass transition temperature
Tg , where they appear to form interpenetrating networks of “fast”
and “slow” particles.30,33–39 The rate of growth of these dynamical
structures upon cooling clearly plays an important role in the glass
transition, and this phenomenon is widely believed to be the ori-
gin of the decoupling between viscous and diffusive relation (i.e.,
the breakdown of the Stokes-Einstein relationship).40 Given these
observations, it is apparent that these heterogeneous motions do not
correspond to modes that extend throughout the system, and thus,
these motions might more naturally relate to those unstable modes
arising from only a finite fraction of the fluid particles, i.e., localized
modes.

The present work is an attempt to understand the nature of
these unstable localized (UL) modes and to examine the degree
to which these modes may relate to the dynamical heterogeneity
mentioned above. In doing so, we are influenced by pioneering
work by Zwanzig,41 indicating that collective transverse momen-
tum excitations can be defined in liquids whose lifetime should scale
in proportion to the fluid structural relaxation time (shear stress

relaxation time). We find that particles that contribute most to the
UL modes form clusters, where the size of these clusters grows
upon cooling, as found before for both mobile and immobile par-
ticle clusters characterizing dynamical heterogeneity in cooled liq-
uids.30 Moreover, the particles participating in the UL modes exhibit
an enhanced mobility that persists on a time scale that scales in
proportion to the structural relaxation time from the intermedi-
ate scattering function, in accord with Zwanzig’s theory, if these
dynamical clusters are identified with fluid collective excitations.
Perhaps surprisingly, the clusters of particles corresponding to the
UL modes do not coincide with either the “mobile” or “immobile”
clusters, identified previously in the study of mobility fluctuation
in glass-forming liquids. Instead, these INM clusters seem to lie
in the boundary regions between these extreme mobility clusters
so that UL clusters are facilitators of the dynamics. We thus have
another form of “dynamical heterogeneity” that is of interest for
understanding the dynamics of glass-forming liquids from a funda-
mental perspective. Recent simulations have indicated a three-state
structural heterogeneity in strongly interacting two-dimensional flu-
ids that might be related to the three dynamical states observed
in our simulations.42 A valuable side result is that we demonstrate
that the cluster size can be used to discriminate between localized
and delocalized modes, which is far less computationally intensive
than the traditional finite-size scaling method to distinguish mode
types.

We also mention that mobile facilitation clusters are a cen-
tral feature of the model of glass-formation developed by Chandler
and co-workers,43 although it has not been clear how such clus-
ters might be specified in structural glass-forming liquids. Kawasaki
and Onuki44,45 have previously suggested kinds of facilitating parti-
cles that they term “bystander” particles that mediate the collective
particle motion of the cooled liquid, and Zhang et al.46 confirmed
the indirect participation of relatively mobile particles in facilitat-
ing collective particle exchange motion. However, the significance
of these “bystander” particles was not understood in these previous
works.

The UL clusters offer a potential realization of such “facili-
tation” clusters. These findings are based on simulations of both
a coarse-grained polymer model and the Kob-Andersen binary
Lennard-Jones (BLJ) of Ni–P metallic glass47 to demonstrate the
robust nature of the results. It should be appreciated that the Kob-
Andersen model is metastable with respect to the crystal,47 so this
is a model of a supercooled liquid at temperatures below the melt-
ing temperature of this system. Our polymer model apparently has
not been observed to crystallize at low temperatures, enabling the
study of the approach to glass-formation without the complication
of incipient crystallization.

II. MODELING AND SIMULATION DETAILS
Our results are based on equilibrium molecular dynamics sim-

ulations of the bulk BLJ mixture48 and bulk coarse-grained “spring-
bead” polymer model.49 Both polymer and BLJ simulations have
been described in detail in earlier works.11,30

The bulk BLJ contains 80% of type A particles and 20% of
type B particles with the same mass. The interactions between these
particles are the LJ potential,
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Vαβ(r) = 4εαβ[(
σαβ
r
)

12
− (

σαβ
r
)

6
], r < 2.5σαβ, (1)

where α, β ∈ {A, B} with εAA = 1.0, σAA = 1.0, εAB = 1.5, σAB = 0.8,
εBB = 0.5, and σBB = 0.88. We employ periodic boundary conditions
in all dimensions at a fixed density (ρ = 1.204) for all BLJ simula-
tions. The temperature range we cover is 0.44 < T < 2.5. This system
and the thermodynamic path have been explored in countless previ-
ous publications, making it a natural first test case. We simulate BLJ
with system sizes of 200, 400, 800, 1000, 1600, and 9000 particles;
the system with 9000 particles is new to this work, while the smaller
systems were simulated in Ref. 11.

The polymer melt consists of chains of 20 monomers linked
by a finite extensible nonlinear elastic (FENE) spring potential.
The FENE interaction parameters are k = 30ε and R0 = 1.5σ. The
interactions between all monomers are the forced-shifted Lennard-
Jones (LJ) potential with σpoly = 1.0 and εpoly = 1.0, truncated at
2.5σpoly. We consider systems containing either 100, 200, or 400
chains of polymer molecules. The temperature range we simu-
late for the bulk polymer is 0.30 < T < 2.5. All polymer simula-
tions are performed with periodic boundary conditions at constant
density ρ = 1.0.

All quantities reported here are in reduced LJ units. The length
is in terms of σ ≡ σAA = 1.0; energy is in terms of ε ≡ εpoly = 1.0. Tem-
perature is given in units of ε/kB, where kB is Boltzmann’s constant.
Time has the unit of (mσ2/ε)1/2.

III. RESULTS AND DISCUSSION
A. INM and domains of vibrational spectrum

In order to examine the properties of the unstable localized
modes, we need to first formally define the instantaneous normal
modes. We start from the Hessian matrix that characterizes the
curvatures of the local potential energy surface. The Hessian is a
3N × 3N matrix, defined as

Hiα,jβ =
∂2V

∂riα∂rjβ
, (2)

where i and j are particle indices and α and β are indices for the
spatial direction. In the context of solids, the motion of the sys-
tem can be viewed as quasiharmonic vibrations about the local
potential energy minima. In this approximation, the eigenvalues
λn of the Hessian matrix are obtained by solving the eigenvalue
problem,

Hen = λen; λn = mω2
n, (3)

where ωn are the mode frequencies, m is the particle mass, and en are
the corresponding eigenvectors describing the mode motion. Since
the liquid is not constrained to reside near a minimum of potential
energy, the local curvature of the PES (and hence the force constant)
can be negative. In the harmonic picture of motion, this corresponds
to an imaginary mode frequency, corresponding to exponentially
divergent motion. This is the reason why these imaginary modes
are proposed to connect to molecular diffusion, as opposed to a
simple restoring force. Following a standard practice, we represent
imaginary frequencies iω (associated with negative eigenvalues λ) as
negative frequencies −ω to simplify the graphical presentation of the
mode spectrum. We then evaluate the density of states (DOS) ⟨ρ(ω)⟩
for both bulk BLJ and bulk polymer in Fig. 1, which is averaged over
100 independent configurations for each T. We exclude three zero
frequency modes from the eigenfrequencies, since these modes cor-
respond to a trivial translation of the system. Figure 1 shows that the
fraction of the unstable modes decreases with decreasing tempera-
ture for both BLJ and polymer, indicated by the shrinking size of the
negative lobe of DOS upon cooling. In contrast, compared to DOS
of BLJ, we observe an additional feature in the high-frequency sta-
ble region of the spectrum in the bulk polymer [Fig. 1(b)], which is
associated with the bonds that connect the nearest monomers within
polymer chains.

To examine the spatial and temporal correlations of parti-
cles in different parts of the vibrational spectrum, we first need
to unambiguously pinpoint the crossover point between the local-
ized and delocalized modes in the vibrational spectrum. Clapa
et al.11 introduced a finite-size scaling approach to identify this
crossover point. First, we replicate this method and then consider
a new method focusing on the size of particle clusters that are

FIG. 1. The instantaneous normal mode density of states ⟨ρ(ω)⟩ of (a) bulk binary Lennard-Jones mixture and (b) bulk polymer for some representative temperatures. The
negative frequency ω represents the imaginary eigenfrequencies. The insets of (a) and (b) show the participation number (PN) P(ω) [Eq. (4)] for BLJ and bulk polymers at
the same temperatures shown in the main panel.
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associated with localized and delocalized modes that do not require
a finite-size analysis. Delocalized modes are defined as those that
involve an extensive fraction of the system, while localized modes
involve an intensive fraction. This is quantified by the participation
number (PN),

Pω = ⟨(∑
i
(eωi ⋅ eωi )

2)
−1

⟩, (4)

where eωi is the contribution of particle i to the normalized eigen-
vector corresponding to eigenfrequency ω. We evaluate the partici-
pation number and show its frequency dependence in the insets of
Fig. 1 for a single system size, which shows that the smaller val-
ues of the PN occur at the wings of the DOS, corresponding to
localized modes. The transition frequency between localized and
delocalized modes is known for the BLJ system from Ref. 11, and
we examine three system sizes for the polymer system to iden-
tify the transition location of that system. By scaling the participa-
tion number by the linear system size L ∼ N1/3, i.e., P̃ω = Pω/L
[shown in Figs. 2(a) and 2(c)], we see that the scaled participa-
tion number (P̃) is L-invariant at the transition point. Transitions
between localized and delocalized modes occur at two crossover
frequencies: ωunstable

c in the unstable region and ωstable
c in the sta-

ble region. Accordingly, in Figs. 2(a) and 2(c), from left to right,
the vibrational spectrum can be separated into unstable localized

(UL), unstable delocalized (UD), stable delocalized (UD), and sta-
ble localized (SL) modes. It is not surprising that the transition
between localized and delocalized stable modes for the polymer sys-
tem occurs at the same location as the dip in the DOS that separates
the contributions to the DOS from the intramolecular bonds of the
polymer.

B. INM clusters and their relation to extreme
mobility clusters

The local mobility of glass-forming materials becomes increas-
ingly dynamical heterogeneous below an onset temperature TA,
above which Arrhenius relaxation provides an adequate description
of the fluid dynamics.30 Particles with either significantly enhanced
or suppressed mobilities form spatially correlated clusters. In this
section, we examine the clusters of particles associated with the INM
spectrum and compare these dynamical clusters with extreme high
and low mobilities.

Having distinguished the different types of modes in the INM
spectrum, we next examine the spatial correlations of particles in
each mode. For the delocalized modes, all particles have a simi-
lar contribution to the PN so that the contribution of particle i to
the participation number at frequency ω, i.e., eωi ⋅ eωi ≈ 1/N, by
definition. For the localized modes, some particles make a much
larger contribution to the PN, while others make a much smaller

FIG. 2. The modified participation number P̃ω = Pω/L of (a) binary Lennard-Jones mixture and (c) polymer for various system sizes. The system size dependence study
pinpoints the transition between localized and delocalized modes. From left to right, the figure shows the regions of unstable localized (UL), unstable delocalized (UD), stable
delocalized (SD), and stable localized (SL), which are separated by the crossover point and marked by dashed lines. The average size of particle clusters Mn for each
frequency ω for (b) BLJ and (d) polymer. The particles that contribute most to the mode (eωi ⋅ e

ω
i > 1/N) form spatially correlated clusters in the UL and SL modes. Thus, by

studying the frequency dependence of the cluster sizes, we can identify the transition frequency ωunstable
c and ωstable

c without the need for a system-size dependent study. The
transition frequency ωunstable

c between localization and delocalization in the unstable modes can be identified by the critical cluster size Mn = 10 [ωunstable
c ≡ ω(Mn = 10)].
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contribution. Accordingly, a criterion eωi ⋅ eωi > 1/N identifies the
particles that contribute most significantly to the PN. For each fre-
quency ω, we examine the spatial correlation between these particles
by evaluating the average cluster size Mn of these particles for all
ω. We define two particles as part of the same cluster if the dis-
tance between these particles is less than a nearest-neighbor cut-
off distance, defined by the location of the first minimum in the
density-density pair correlation function g(r); here, rBLJ

min = 1.38 and
rpoly

min = 1.46. Using this method, we identify particle clusters for
each ω. Since it is possible to have multiple clusters at each fre-
quency, we evaluate the number-averaged cluster size as a function
of ω in Fig. 2(b) for BLJ and Fig. 2(d) for the polymer. Note that
we exclude the clusters that fully span the simulation box with peri-
odic boundary conditions since these clusters correspond to clusters
having infinite size; this includes almost all clusters of the delocal-
ized modes, leaving only very small clusters of delocalized modes.
We find that the average cluster size Mn is significantly larger in UL
and SL modes than that in UD and SD modes (Fig. 2). It is natural to
expect the particles in localized modes to be clustered, though not a
prerequisite.

An examination of cluster size offers a simple means to sepa-
rate localized and delocalized modes. By comparing to the crossover
defined from the finite-sized scaling of the PN [Figs. 2(b) and 2(d)],
we can identify the transition frequency between unstable local-
ized mode and unstable delocalized mode based on cluster size as
ωunstable

c ≡ ω(Mn = 10) for both BLJ and polymer fluids, since
below (or above) this characteristic system size, the INM spectrum
delocalized (localized), regardless of the system size (not shown for
clarity in this figure). Thus, we can identify the transition frequency
ωunstable

c between UL and UD modes (see Fig. S3 of the supple-
mentary material for the temperature dependence of this transition
frequency), and ωstable

c between SD and SL modes by the behav-
ior of cluster size using only a single system size. Note that in the
case of polymer melts, the crossover between SD and SL cannot be
assigned a single frequency but rather corresponds to a frequency
band around 30, which defines the localization crossover. The avoid-
ance of a finite-size study of INMs offers a substantial computational
advantage, particularly since the evaluation of the eigenvectors is

computational time and memory intensive for much larger system
sizes.

The UL modes exhibit spatially correlated clusters, as indicated
by the relatively large average cluster size in the leftmost part of
the spectrum [Figs. 2(b) and 2(d)]. We visualize some representa-
tive UL clusters from the polymer in Fig. 4(a). Evidently, these UL
clusters are, indeed, highly spatially correlated and do not appre-
ciably overlap at different frequencies. [Panels (b) and (c) of Fig. 4
are discussed later.] In the UL modes of the polymer fluid, the per-
centage of particles that make the most contribution to these modes
(with eωi ⋅ eωi > 1/N) ranges from less than 1% to about 5%, as ω
increases toward zero frequency and is nearly invariant with tem-
perature. Notably, this percentage is consistent with the inferred
dynamics “initiator” concentration in the string model of glass-
formation.31,32 Similarly, particles associated with the SL mode that
contribute most to the PN also form spatially correlated clusters, as
indicated by the cluster size Mn ≳ 10 in that region. In the remain-
ing discussion, we focus on clusters of the UL modes, since these
modes are naturally expected to be related to localized molecular
rearrangements. The stable modes, on the other hand, should cor-
respond to reversible vibrational motions. Of course, the localized
stable modes may also involve low frequency “soft modes” corre-
sponding to large scale collective oscillatory motions, involving an
appreciable number of particles.50,51 We plan to focus on the geo-
metric nature of the motions involved in these modes in a separate
paper.

One of the most salient properties of dynamical heterogeneity
in cooled liquids is the growth of spatially correlated clusters hav-
ing extremely low or high mobility,30 and we initially expected that
INM clusters have some direct relationship to dynamically heteroge-
neous motion observed in previous simulations.30 In particular, we
anticipate that their sizes would grow upon cooling as well. Since we
have already identified the frequency that separates the UL and UD
modes for the polymer, we next examine the temperature T depen-
dence of average cluster size in UL modes in Fig. 3. We find that the
average cluster size in UL mode MUL increases with decreasing T,
reminiscent of both the mobile and immobile particle cluster sizes
studied previously.30

FIG. 3. The temperature dependence of the average size of UL clusters ⟨MUL⟩ for (a) BLJ and (b) polymer. The size of UL clusters increases upon cooling, qualitatively
similar to the dynamical clusters associated with extreme mobility. Solids curves are guides to the eye.
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We now consider how these UL clusters might be related to
clusters with extreme mobility. Since the size of the UL and mobil-
ity clusters is not comparable, we consider the characteristic lifetime
of the UL clusters. In our previous work defining the characteristic
lifetime of the mobile/immobile particle clusters,30 we considered a
certain fraction of particles at any given time interval from which
particle clusters are identified and these particle clusters are sub-
sequently normalized by the cluster size of a random collection of
particles. (More details on the definitions of mobile and immobile
particle clusters are provided in the supplementary material and
Ref. 30.) It has been shown that the lifetime of the immobile particle
evolves in a fashion that mirrors the collective intermediate scatter-
ing function and, unsurprisingly, the lifetime of the immobile par-
ticle can be essentially identified with the structural relaxation time
τα.30 In contrast, the mobile particles exhibit a lifetime comparable
to the peak in the non-Gaussian parameter, a much shorter time in
glass-forming liquids at low temperatures. Similarly, to quantify the
persistence time of these UL particle clusters, we consider the rel-
ative displacement of these clusters. In particular, we evaluate the
dimensionless displacement, ⟨MSDclust⟩/⟨MSD⟩ − 1, where ⟨MSD⟩
is the mean square displacement for the particles in the system as a
whole and ⟨MSDclust⟩ is the mean square displacement for the UL
particle clusters, weighted by the number of times these particles
appear in the UL modes. We note that the fraction of particles that
contribute most to the participation ratio in the UL modes is almost
invariant with temperature.

In Fig. 5, we plot the measure of the relative mobility of UL
clusters as a function of time for various T. Interestingly, for both
the BLJ and polymer systems, the time scale of the peak values of
the largest relative displacement of UL clusters grows upon cool-
ing and occurs at a time scale well beyond that of the vibrational
time scale for which the INM would naively be expected to persist.
For the polymer case, we find two characteristic peaks—the first of
which occurs at a time scale on the order of the vibrational time
[O(10−13s)] of the polymer, which is independent of T. The absence
of such a peak in the BLJ system suggests that this is a polymer-
specific effect associated with modes related to the bond potential.
We point out that the mean-squared displacement of the particles in
these UL clusters is only slightly larger than the system as a whole,
indicating that these clusters cannot be identified with mobile par-
ticle clusters. To illustrate this more clearly, we follow previously
established methods30,52 to identify the mobile and immobile par-
ticle clusters in polymers and compare these dynamical clusters to
UL clusters. To illustrate this point visually, we render examples of
the UL, mobile, and immobile clusters in space in Fig. 4. Specifically,
we show representative UL clusters in panel (a) and mobile parti-
cle clusters in panel (b) and immobile particle clusters in panel (c)
as red and blue beads. Evidently, the particle clusters in UL modes
are spatially distinct from previously defined clusters having extreme
mobility.

We now discuss the significance of this persistence time of UL
clusters in relation to time governing the lifetime of the mobile
and immobile particle clusters. To do so, we compare the char-
acteristic lifetime tUL of UL clusters to the lifetime of the mobile
and immobile clusters.30 As mentioned above, we define the life-
time of UL clusters tUL as the time at which ⟨MSDclust⟩/⟨MSD⟩ − 1
peaks (see Fig. 5). (We compare the relative size of the mobile
and immobile particle clusters defined by Ref. 30 in Fig. S2 of the

FIG. 4. Visualization of (a) some typical UL clusters in the polymer. Each color
represents one frequency ω in the UL mode. (b) Clusters with excessively high
mobility are rendered as red beads. We simultaneously superimpose the UL clus-
ters from panel (a), rendered as small white beads. We see that UL clusters
generally do not overlap strongly with the particle clusters having excessively high
mobility. (c) Data from panels (a) and (b) are combined with the immobile parti-
cle clusters, which are rendered as blue beads. The configuration is taken from
T = 0.35, and mobile and immobile particle clusters are identified at the time scale
tUL at which ⟨MSDclust⟩/⟨MSD⟩ − 1 (Fig. 5) peaks.
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FIG. 5. The relative mean square displacement of UL clusters
⟨MSDclust⟩/⟨MSD⟩ − 1 compared to that of all particles on average for
(a) BLJ and (b) polymer.

supplementary material.) The characteristic times of these mobile
tM and immobile clusters tI are correspondingly defined by the time
at which the size of mobility clusters peaks. Figure 6 compares the
characteristic times of mobile tM, immobile tI, and UL clusters tUL,
normalized by their values at the onset temperature TA for glass for-
mation. This eliminates the difference between the relaxation times
associated with a simple constant prefactor.

We see from Fig. 6 that the normalized time tUL nearly coin-
cides with the normalized structural relaxation time τα obtained
from the coherent intermediate scattering function at a scale of
the interparticle distance (see Fig. S1 of the supplementary mate-
rial). We also include the lifetime of the immobile particle clusters
tI, defined in our previous study,30,53 which scales proportionately
to τα to a good approximation. Additionally, the lifetime of the
mobile particle clusters tM scales linearly with t∗, the characteris-
tic time scale at which non-Gaussian parameter peaks.30 Previous
work has also shown that the characteristic time tχ at which the
4-point density function peaks scales linearly with the structural
relaxation time τα.54 Consequently, we do not show t∗ and tχ in
Fig. 6 due to the linear scaling with tM and τα, respectively. The
persistence of the UL clusters is clearly highly correlated with the
persistence time of the immobile particle clusters, and thus the struc-
tural relaxation time τα and tχ . The absolute value of the time scale
tUL is evidently shorter than either the mobile or immobile par-
ticles for the temperature range we investigate, but at the lowest

FIG. 6. Characteristic time scales for the peak cluster size of mobile, immobile,
and UL modes, normalized by their values at TA. Panel (a) shows data for BLJ,
and panel (b) shows data for the polymer. There is a strong similarity between tI
(orange up triangles), tUL (red squares), and τα (dark blue circles). (c) Parametric
plot of the α-relaxation time τα and the characteristic time tUL of the UL modes,
demonstrating a linear proportionality between these characteristic time scales.

temperatures simulated, tUL becomes similar to tI. In particular, the
lifetime tUL of the UL modes grows linearly with the structural relax-
ation time τα to an excellent approximation. This relationship fully
supports the hypothesis that the dynamic clusters associated with
UL modes can be viewed as collective excitations, in accord with
the theory of Zwanzig.41 This is the first direct evidence of the long-
time persistence of the unstable mode in cooled liquids, although
Zangi and Rice55 and Coslovich and Pastore7 have previously sug-
gested that such long term persistence of unstable modes might
exist.
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IV. CONCLUSIONS
Our analysis of the heterogeneous dynamics of a model poly-

mer and metallic glass-forming liquids indicates that there are mul-
tiple distinct types of dynamical heterogeneities that contribute to
the dynamics of glass-forming liquids. In previous work, we identi-
fied “mobile” and “immobile” particles having a significant influence
on the rate of molecular diffusion and structural relaxation, respec-
tively.30 Both classes of particles form fractal clusters that grow upon
cooling whose lifetimes are reflected in autocorrelation functions
associated with molecular diffusion and the relaxation of density
fluctuations in the fluid. The present work considers the proposed
existence of long-lived collective excitations in model glass-forming
liquids, and we provide evidence that the clustering particles associ-
ated with the unstable localized modes can be identified with well-
defined large scale collective excitations.41 These localized modes are
identified by a combination of an instantaneous mode analysis and
methodology drawn from random matrix theory. We find that there
is yet another clustering phenomenon associated with these collec-
tive excitations in the fluid. The unstable localized clusters are found
to increase in size, similarly to the immobile and mobile particle
clusters with decreasing temperature, but this new class of clusters is
found to lie in the interfacial region between the previously defined
“mobile” and “immobile” particle clusters. Along these lines, recent
simulations have suggested a three-state dynamical heterogeneity
in glass-forming liquids.42 Because our findings are also consistent
between the Kob-Andersen model of metallic glass-forming liquids
and polymer melts, we expect these results to be general. The unsta-
ble localized mode particle clusters evidently serve to facilitate the
fluid relaxation process, but these clusters do not actually participate
in the large scale collective motion associated with barrier crossing
events governing activated transport.

Based on the observation of the present paper, we should also
look for long-lived material excitations in cooled liquids by neu-
tron scattering methods in the same fashion as for liquid 4He.56,57

In particular, these excitations should be evidenced by a material
dispersion relation defined by a scattering peak in the dynamic struc-
ture factor as a function of wavevector q. At low q, a linear scaling of
the S(q, ω) peak position, corresponding to the propagation of sound
waves (phonons) associated with the localized stable modes, should
be observed, while at higher q values, comparable to the interpar-
ticle spacing, we might expect a roton minimum in the dispersion
relation, just as found in liquid 4He.56,57 Such a minimum has, in
fact, been observed in the metallic glass ZnMg and other materi-
als,58,59 where this feature is accessible experimentally by neutron
scatterings.60 This feature has also been greatly discussed in relation
to understanding the low temperature dependence of the specific
heat and thermal conductivity in glass-forming liquids.61–64 We ten-
tatively suggest that the Boson peak of glass-forming liquids might
be identified with the energy gap defining the excitation energy of
the collective momentum fluctuations, an interpretation similar to
the roton energy of liquid 4He.56,57

SUPPLEMENTARY MATERIAL

See the supplementary material for details on the definition
of relaxation time, mobile and immobile particle clusters, unstable
mode fraction, and critical transition frequency.
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